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Preface

Methods of optimal control, namely, the moments method and the small
parameter method are rarely used for the solution of economic problems. Using
these methods to economic processes will make it possible to take into account
certain influencing factors and their effects, as well as possible to evaluate the

changes in the processes.

Application of the method of moments to problems of optimal control of
linear, quasi-linear systems are considered in N. N. Krasovskiy N. N. [86],
Butkovskiy A. G. [16], Albrecht E. G. [2, 3], Egorov A. 1. [37]. Moreover, in
those considering systems are used diversely optimized functions of time,

linearity and norm.

The method of moments can often help to find the kind of control actions in a
closed analytical form [16], and in cases where this is not possible, gives a single
computational procedure for constructing the exact or approximate numerical
solution of the problem. The complexity of this procedure does not depend on
the number of control actions, it depends only on the order of the equation and
the nature of the Eigen functions of problem. Application of the method of
moments to the economic problems of optimal control singularly perturbed

systems in domestic and foreign sources practically does not meet.

Small perturbations in problems of optimal control can be introduced
artificially, and then perturbation theory appears as a method of research of the
original problem [19]. In this sense, it can be applied to the study of the
properties of the main of the trajectories and modes of development of the

economic system.

The book is dedicated to two aspects: first aspect is proposed approximate

method of decomposition of the original problem of optimal control, which allows
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us to formulate it in the form of the problem of moment. It is a new direction in
relation to the system under study in the theory of control. Second aspect is the

studing of the results of dynamic processes optimal control of the economy.
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Chapter 1

Decomposition in a Singularly Perturbed System






1.1 Integral Manifolds and Separation Movements

Consider the problem of separation singularly perturbed equations of the
dynamics of the controlled system

x=AM)X+A{t)z+B (t)u+ f(t),
uz=A(t)x+A[)z+B,(t)u+ f,(t),

X(t,)=x°, z(t,)=2°
or
y(t, 1) = At, 1) y(t, 1) + B(t, p)u(t) + F(t, 1), (1.1.1)
yt)=y', =01,

where

AD A
A= Ln Law
H u

~ X(t,/—l) Bl(t)
: Y(t,,u)—(z(t“u)]’ B(t,ﬂ)=[527(t) ’

f.(t)
f(t,u=|1

L0 x(t)eR", z(t)eR™ - vectors of slow and fast
—h
7]

coordinate system (1.1.1) u(t)eR" - control vector function; gz - a small
positive parameter, te[t,,t,] vector functions f(t)eR", f,(t)eR"™ -
characterize a constant external force.

Suppose that the following conditions are met:

I. Matrices A(t), A(t), A(t), A,(t)— defined uniformly bounded and

uniformly continuous with their derivatives with t €[t,,t].
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[1. Eigenvalues value of matrix A, (t) submits to an inequality

ReA(t)<—y<0, (i=1m), (1.1.2)
where y >0 - some a constant, te[ty,t,].

At u=0, instead of (1.1.1) we receive uncontrollable system

X=AOx+A [0z + 1, (0),

. (1.1.3)
ut = AOX+ A1z + ().

If the conditions I, 11, then the system (1.2.2) is an integral manifold [98]
Z=H(t,u)x+2Z. (1.1.4)
Then the slow movement on the integral manifold (1.1.4) describes the

system

x=(AM)+AMOHE )X+ AM0Z+ (1), (1.1.5)
where the matrix H = H(t, #) and the vector Z = Z(t, x) are determined from

the equation

puH =—uHA () + A,(OH + A, — uHA,(DH,
uZ=(A(t)— uH(t, 1) A )7+ (f, (1) — uH (t, ) f, (1))

Making the system (1.1.3) replacement z=H(t, )X+ Z(t, ) +n can be

(1.1.6)

divided into fast and slow movements

X=(AM)+AOHE )X+ A M7+ 1,0 + A (07,

_ (1.1.7)
ury = (A1) — uH ([, 1) A, (O

This procedure is described in [44] when dividing of slow and fast
movements uncontrollable system.
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Direct application of this approach to system (1.1.1) is not possible. This is
due to the following reasons: when considering problem of optimal control, we
are interested primarily controllability of the system and the selection of the
control function. A selection of the control function is carried out by various
criteria of optimality and is associated with other problems.

Depending formulation of the problem, the above method can be applied only
for the intermediate results of the general problem, as is done in [44].

If we act in the same way as the way the system (1.1.1), then the second
equation (1.1.6) will be even additional term, which contains the control
function, which has not yet been determined.

In the first equation (1.1.6) contains a small nonlinearity, it is necessary to set
the initial condition in the beginning it is necessary to establish the existence
and uniqueness of the solution of this equation. If the initial value problem for
this equation is solvable, then there is another question that relates to the
passage to the limit « — 0 in the area of the boundary layer [18].

Given these observations outlined here offer significantly modified approach
integral manifold, which allows for "a complete separation of" slow and fast
coordinate system (1.1.1) and get a new system with traffic separation, which
has all the properties of the original system. And this in turn makes it possible
to formulate the optimal control problem under the constraint (1.1.1) in the form
of the problem of moment [42], which is a new step towards the studied system
in theory of optimal control.

We introduce the change of variables:
Z(t, 1) = Z(t, p) + Hx(t, w), (1.1.8)

X(t, g2) = X(t, 1) — uNZ(t, ), (1.1.9)
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where the matrices H =H(t, ) <> N =N(t, ) have dimensions respectively
mxn, nxm and will be determined by the parameters of the system (1.1.1).

Later they called a matrix integral manifold.

From (1.1.8) and (1.1.9) we have the relation:

():(j=[E”_ﬂNH ﬂN](Xj, (1.1.10)
Z -H E, \z

x) (E, - uN X

[Zj_[H Em—ﬂHNJ(f)' —

We denote
E, - uN
M =M(t,x) = , (1.1.12)
H E_— uHN
then
E. — uNH N
Mt=| T A AT (1.1.13)
—H E,

It is easy to verify that for known H and N, M-M ™ =E,

+m*

Since y:()z(j, y:@j,the ratio (1.1.10) and (1.1.11) are written as

y=M"y, y=M-y. (1.1.14)
For non-stationary matrices H and N depend ont and . Then the second

relation (1.1.14) we have
y=M-y+M-y. (1.1.15)

In view of (1.1.14) and (1.1.15), the system (1.1.1) is transformed as
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y=(M'AM -M M)y +M Bu+M*f . (1.1.16)

We write the equation (1.1.16) in expanded form

|

pN = A )N+ NA, (t, 1) + A, + uN(uH + pgHA (t, 1) - A, — AH)N
%Aa(t,#)Jr(#H +uHA (t, 1) - A, — AH)N [

N X

] A (t, 1) + N(—pHA (t, 1) + A+ AH — uH)

- %(—#H — At 1)+ A+ AH)

Ny X

Js

(1.1.17)

B (t, 1) fi(t, )
+ 15 U+l 1 ; :
_Bz(taﬂ) - fz(tnu)
Iz H
where
At )=AO+AOHE L), At u)=A0)—-uHE AR,
Bi(t, 1) =B, () +N(t, 1)B,(t, 1), B,(t, 1) =B, (t) — uH (¢, ) B,(1),
fi(t. )=, + Nt ) ot ), F,(t )= f,() - uH(t, ) F,(1), (1.1.18)
u=u(t, ).

In order to slow and fast state variables of the system (1.1.1) divided, we
require the following conditions:

—uH — uHA (t, 1) + A, + AH =0 and
uN —yA(t,,u)N + NAA(t,y)+ A =0. (1.1.19)

Hence we have the following matrix equations from which we can determine
the matrices-functions H and N:

HH =—uHA, + A+ AH — uHA, (H + AA), (1.1.20)
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uN = AN —NA, + uNHA, +,uA2(H +AAIN-A, (1121)
where A=A —AA'A,.

If H and N satisfy the equations (1.1.20) and (1.1.21) then from (1.1.17) we

have
o [Atw) 0 o [ Bt f,(t. o)
.= 1 - R u+| 1 -
[Zj 0 —=Atnu [Z] —B,(t 1) — f,(t, 1)
H u U
and
X=A(t )%+ B,(t, )u+ fi(t,22) | (1.1.22)
uZ = At 12)Z + B, (t, g)u+ f,(t, 1) . (1.1.23)

The boundary conditions for equations (1.1.22) and (1.1.23) are defined as
X(t)=%" X(t)=%, Z(t,)=2°, Z(t)=7", (1.124)

where X' =x' +uN(t)Z', Z' =2 —H(t)x', i=0, 1.

Equation (1.1.22), (1.1.23) and the boundary conditions (1.1.24) can be
rewritten as

V=AM u)y+B(t u+ft,u), yt)=y, =01, (1.1.25)
where
o (R X\ s 4 Bt > (1.1.26)
H U
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) A7)
ft,)=M7*f =1

- , X and Z are determined from (1.1.8) and
;fz(tvﬂ)

(1.1.9),and M of (1.1.13),

) At 0
At, 1) = 0 AA(t, u) | (1.12.27)
)7

where A (t,z) and A,(t, ) are determined by the relations of (1.1.18).

As a result, we have the following result as a theorem.
Theorem 1.1.1. Suppose that the conditions I, 1l and differentiable matrices
functions H(t,z), N(t, ) are satisfying the equation (1.1.20) and (1.1.21).

Then the system (1.1.1) may be divided into two subsystems of lower order,
respectively, which contain slow and fast coordinate system, where they are

connected only in the control.

Thus, if the conditions of theorem 1.1.1, we obtain a new system with traffic
separation, which is equivalent to the original system, as it has all the properties
(controllability and stabilizability) of the original system (1.1.1).

Therefore, in the study problems of control as constraints can take differential
constraints (1.1.22), (1.1.23).

1.2 Matrix of Integral Manifolds

Here we study the equation (1.1.20), (1.1.21) from which are determined by
the matrices of integral manifold. We prove the existence and uniqueness of
solutions of the equation (1.1.20). Show more mutually conjugate two equations
that correspond to linear homogeneous parts of (1.1.20) and (1.1.21).
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Theorem 1.2.1. If @.(tt,) is transition matrix for the equation

P =—A,®P() , and W(tt, 4) for the equation wu2(t,u)=A,M2(t k) ,
equation (1.1.20) with the initial condition

H(t,,.)=H,, (H,eG,GcR™"-bounded set) at x>0 equivalent to the

integral equation.

(G0 = P8 )20+ [ (50 A (S ) -
H,
[ (5, (5, 1) A, (8) (H (5,1 + A (8) Ay(S) ) 2L (E5)dS = Wy, i) HoPl (1) +
)

+% [Es.00(AG) - uH (s A E)(H(s, 1)+ A S)A(S)) )2l (ts)ds,

(1.2.1)
telt,,t,].
Proof. Differentiating (1.2.1) with respect to t and using the equation:
b.(t.4) = ~A OP.(LL). (1.2.2)
HE (L, 1) = AOPL, 1), (1.2.3)

We obtain

. 1 , '

H(t, 1) = ; A4(t)‘P(t,t0,,u)H0®* (t’to) _T(trtovﬂ)Ho@*(tvto)p\)(t) +
+%A4(t> [W(t,s, 1) (A ()~ H (3, 1) A () (H (5, 1) + A (S)A(S) ) (¢, 5)ds —

—% [W(t,s,1)(A(s) — H (5, 1) A (S) (H (5, 12) + A (S) Ay(5) ) ! (8, S)dsA 1) +

+%A3(t)—H(t,#)Az(t)(H(t,ﬂ)wLA41(t)A3(t))= AOI L OH )+

10
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1] B} ,
e [W(ts, (A (5) = 1H (5, 1) A (S) (H (s, 1) + AZ(S)A(S) ) ! (8, ) ds] -
b

f[W(t,to,u)Ho@;(t,tm% [, 0 (AG) - uH (s A (H(s, ) + A S)A(S) ) Lt 5)ds AL (1) +

+%A3(t)+H(t,u)Az(t)(H(t,uHA;l(t)Ag(t))=%A4(t)H(t,u)—H(t,u)Ao(t)+

+%A3(t>— H(t A G (HE )+ AT OA®D).

Hence we have the equation (1.1.20), Q.E.D.

We now show that (1.1.20) (or (1.2.1)) has a unique solution when
0<u<u,<1,where p, -apositive constant. We introduce the notation:

Hy (610 = Bty i) Ho @ (1) + L [t 5, A9, (124)
7

)

K(H,t,ﬂ)=—%f‘i’(t,s,#)H(S,#)AZ(S)(H(S,ﬂHA41(S)A3(S))<D*’(t,5)ds. (1.2.5)

Then the integral equation (1.2.1) is written as an operator equation

H(t ) =H,(t, 1) + 1K (H L, 1) (1.2.6)

where K(H,t,z) - integral operator in the form (1.2.5).

At u>0, H,eG, telt,t] introduce the following notation:

M, =[Hq[. M, =max|[A, )], M, =max|A,®)].

to<t<t, to<t<t;

M, = max

tystst

AO|M={M, M, M, M}, 1.2.7)

because by condition | and Il of the matrices A, (t), A (t) are uniformly

bounded and A, (t) - stable matrix with t €[t,,t,], then we have

11
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_A(-s)
[¥(t.s,m)|<Ce “ .|

DL (ts)| <C,e*", (1.2.8)

(0<s<t<t, O<u<py,, #4>0, A,>0).

_Altty) At Aty
[H,(t, )| <CMe MTC(l—e z js(l—%jMCe z +M7C£ml, (1.2.9)

where m, >0, ﬂzﬂl( —%}>0,C:cl.cz, U<t HF%-

At
[HE 2| <m,, (1.2.10)

A(t—tg)

||K(H,t,,U)||Sm{l—e “ J(mz+M2)SM*. (1.2.11)

Choose a number s, such, that for any g < u, there were

[Ho(t, ) + K (H,t, )| <m,

For this it suffices choose

1, < min{,ul, m, _*ml}. (1.2.12)
M
We construct a successive approximation H,,H,,...,H,,... by the formula

H., () =H,t ) +uKH,,t,1), k=012,... (1.2.13)
If |H(tw)|<m, at te[t,t], then H,.(t,x) is a continuous matrix

function defined on [t,,t, ] and satisfying

||Hk+1(t,u)|| S”Ho(t,,u)” +,u||K(Hk ,t,,u)” <m +uM™<m,. (1.2.14)

12
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For k=0 and k=1 have the inequality (1.2.14). By induction it holds for all
k>0.

Let the matrix A(t), (i=14) of the system (1.1.1) are defined, uniformly
bounded and uniformly continuous together with its derivatives on [t,,t,]. As a
K(H,t, &) continuous function of its arguments, one can show that there exists

a positive number L for any matrices functions H and ﬁ satisfying the

inequalities

||H(t,/¢)|| <m,, ‘I-:I(t,,u)H <m,, such that

HK(I—T,t,y)—K(ﬁ,t,y)HsLHI-_|—I-:|H (1.2.15)

when z < u,. Subtract term by term from (1.2.13) with k=n-1 is the same

equation for k=n-2. Then we obtain

Hn (thu) - anl(tuu) = ,u[K(anl’t’ ;u) - K(Hn—Z’t! fu)] ' (1216)

in view of (1.2.15) from (1.2.16), we have

[H, (¢ 2) —H, (& )] < ,uLtOITSI&)é Ho®-H_O|  1.217)
We introduce the notation
f, = max(H, (& )~ Ho & 0] (1.2.18)
then from (1.2.17) we have
r<ulLr_,. (1.2.19)

From the recurrence relation (1.2.17) we obtain

r,<ul™'r, (1.2.20)

13
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where mi)t(”H (1) = Ho (t, )] < 1 max [K(H.t )] =M™
IRll<m,,  p<u,

From (1.2.20) follows that the above series converges uniformly for t €[t,,t,]

any choice u < g, and where gL =1.

Now we will put " =min{su,, s}, then at u < u" creation of successive
approximations  (1.2.13) it is possible to, and the sequence
{H (t,)}, k=0,,... converges uniformly on the interval [t,,t,]. Limit of
this sequence satisfies (1.2.6) (or (1.2.1)).

The uniqueness of the solution follows from Gronwall's lemma, for any two

solutions H u H in the common domain of definition is valid assessment

Hﬁ(t,,u) - I—=|(t,y)” Sy“K(H_,t,y) - K(I—=|,t,y)” < LHI—T(t,y) - I-=|(t,y)“. ,
Is possible only if H(t, z)=H(t, z).

Consider the matrix differential equations, which correspond to linear
homogeneous parts of the equation (1.1.20), (1.1.21):

uH =—pFA () + A, 0H (1.2.21)
uN = pA ()N — NA, (1) . (1.2.22)
where H=H(t,z), N=N(t,z), t et,.t], HeR™ NeR™.

In the space R™" dot product [4]

(A,N)= Z o(FA - N). (1.2.23)

1 j=

We show that the equation (1.2.22) will be paired for a homogeneous matrix
equation (1.2.21). Indeed, if the equation (1.2.22) is conjugate to (1.2.21), its

14
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solution N(t) for any t satisfies (H(t), N(t))=Sp(H (t)- N(t))=const , where

the H (t) - solution of the equation (1.2.21).

On the basis of this definition we have
d p— p— - p— p— .
0=Sp(uA®-N®)=Sp(uAONO) + tHON®) =
=Sp(~uHA A D-NO+AOAON® + A ONE) )

Given the properties of the trace of the matrix, we obtain

0=Sp{HOLLN® - A ON® + NOA O]} -

This condition must be executed under any H(t), N(t).
Then 1N (t)— 1A, ()N(t) + N(t) A, (t) =0.

Hence we have the equation (1.2.22). Now we write the equation (1.1.21) in
the form

HN(R) = 1A ON©) - N©)A, (1) +
4 AD(HO+AOAD)NO +NOHDA® |- A1), (1224

Let H(t), (t, <t<t)) - solution of the equation (1.1.20). Then, based on the
basic property of the adjoint equation (it is the solution of the original
differential equation backward in time), the equation (1.2.24) can be written as
the integral equation

N(® = DELINT (L, 1) + [D(E5)[ A(9)(H(S) + ASAS))N(S) + N(SH(S)AS) [t s, i)ds -

LA, (s w)ds: (1.2.25)
us

15



The Optimal Control Algorithms in Systems with Different Rates of Motion

where N, =N(t), @ (t,t), Y.(t,.t,x) are the transition matrix for the

equation Xx(t) = A, ()x(t), xd(t,u)=-A0g(.).

The existence and uniqueness of solutions of the equation (1.2.25) can be
proved similarly to the previous case.
It should be noted that the differential equation (1.2.22), the boundary

condition is not specified in the initial moment of time t,, but in the end of the

transition process. This follows from the basic properties of the ad joint equation.

1.3 Matrix Transition of Singularly Perturbed System and
Its Asymptotic Behavior

Consider the question of constructing a transition matrix of the system (1.1.1).
Suppose that the conditions | and Il. Then for sufficiently small values of the

parameter, the transition matrix Y (t,t,, ) of the system

y(t, 1) = At L) y(t, 1), y(t,) =Y°, (1.3.1)

corresponding to the system (1.1.1) can be determined as the solution of the
matrix differential equation

Y.(t’touu) = A(tuu)Y(t'tO’/u)! Y(tOYtO’/u) = En+m * (132)

Matrix Y (t,t,, 2) divided into blocks

_ Yi(tite 10) Y, (tt, 1)
Y(t,to’ﬂ)_[Y?,(t’to’ﬂ) HY, (Lt 1) J, (1.33)
in view of (1.3.3) from the (1.3.2) we have:
Yi= AQY, + A®Ys Yiltyt ) =E,, (1.3.4)

Y, = A®Y, +AOYs, Yoty by, 2) =0,

16
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Y2 =AY, +AQ)Y,, Y, t,)=0, (1.3.5)
; 1
IUY4 = As(t)Yz + A4(t)Y4 ’ Y4(t01t0;,u) ZZ Em .

Solution of the Cauchy problem (1.3.4) and (1.3.5) will be determined in the
form [17]:

Y, (t,t, 1) =Yi(tty, i) + IV, (7, 1), 1=1,2,3,4, (1.3.6)
where
Vit i) =S V(b)) 1=1,2,3,4, (13.7)
k=0

Y, (7, 10) = Y ILY, (7)1, =1,2,3,
k=0

1 < t—t

IN(z, 1) = = TLY,(2) + DY, (D), v=—2,
H k=0 H
t-t,

1 o0
IN,(r, 1) = ;H71Y4(T) + szY4 (", 7=
k=0

We substitute (1.3.6) to (1.3.4) and (1.3.5). Further in these systems after
function replacement Y, - (t,t,,2), ITY,(t,zz) decomposition (1.3.7),

equating the coefficients of like powers, and separately depending on t, and
separately depending on the t, we obtain the equation for determining the terms

of the expansion (1.3.7).

At ' with regard ¢

dI1,Y,(z)

d = A (t)I,Y,(z), T1 Y,(0)=E,. (1.3.8)
T

At 1° with regard t:

17
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dY1o (t.ty)

& AT AAANY (L), Yiolto t) =E,,
Y a0 (t,t,)= —A;l%Vm (t,t,),

deo('[ t,)

dt (A1 AzA4 A3)Y20(tt) YZO(to’t)— Azo(t )Aao(t)

Yo (t,t,)= —A;lAg)Vzo (t,t,).

At 1° with regard 7 :

ALY, (r) . dIYy(7)

o66) o, A0 _ ()11 e)+ Ao TS
ngYz(T) = A, ()1, (2),
T
deY 0 = Ay (t)TT,Y, (7) + Ay (t)TT,Y, (7) + Ay (t)TT LY,

where A,(t,)=A(t,),i=1234.
For the (1.3.8) - (1.3.12) we have the initial conditions:
Yo (ty,ty) +I1,Y,(0)=E,, Yy, (t,.t,)+I1,Y,;(0)=0,
Yooty to) +T1,Y,(0) =0, Yao(t,,t,)+TL,Y,(0)=0.

The solution of equation (1.3.8) written in the form

ITY,(7)= exp(AA (to)T) :

(1.3.9)

(1.3.10)

(1.3.11)

(1.3.12)

(1.3.13)

(1.3.14)

Solutions of system (1.3.9) - (1.3.12) with the initial conditions (1.3.13) are

given by:
I1,Y,(2) =0, T1,Y,(2) = Ay, (t,) Ap (to)eXp(A4o (to)T) '
TToY;(7) =exp( Ay () 7) A7 (1) A(to)

18
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I,Y,(7) = _EXp(AA (to)T) Aa_é (t) As (t) Ay () Aa_ol(to) +

Hexp(A)(E = 9))(Aulty) + Ao Ao ) A1) )exp(Ag 1)5)cs,

Yao(t,t,) = epr(Ai(G) - A(0)A (0)A(0))do

f

J, (1.3.16)

Yao(t ,t,) =—A () A (t,)Y o(t.t,) ,
Vzo(t,to)=—exp[j (A(o)—Az(aW(a)As(o))da}-Azo(to)AAéao),
)

V“O (t 1t0) = _A;l(to)Aa(to)Vzo ('[,'[0) .
For the matrix I1,Y,(z), i=2,3,4 the following estimated holds on the interval
(0,0) [18]:
I (z)|<C-exp(-pz), (20, p>0, i=234). (1.3.17)

Proceeding similarly with the terms of the expansion of the order x" can be

with respect to t write the following:

dY—lp—Ai(t)le(t,to)JrAz(t)\?sp(t,to), (1.3.18)

at

d;t3p = As(t)vlp(tvto) + A4(t)vsp(t’t0) '

dzt = AWMz (L) + A 1Y (tL),

dY;t,p_l =AY 25 (t,t,) + A, ()Y 45 (t,1,) , with regard 7 :

19
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% 4, (0) ngYs(T) = Ay (t)TT, Y, (7) + A ()T, Y, (2) + dy (2), (1.3.19)
T T

dI1,Y,(7) dI1,Y,(7)

SR (), 2 = AT+ Ap)ITY(0) + ().

where d,, () =S AL Y@+ S AL @Y,

o 2) = Ay Y0+ A TV + 3, Ay (TY,E),
()= Ay N+ 3 A GITY),

1 ()= AT (0 + 3 Ay (T V(D)3 Ay (T Y (0).

The initial conditions for the equation (1.3.18), (1.3.19) is determined by the
condition:

Yip(ty,to) +T1,Y,(0) =0, Yap(ty,t,)+11,Y,(0) =0, (1.3.20)
Yap(ty,to) +T1,Y,(0) =0, Yap(ty,to) +11,Y,(0)=0.

Suppose now that defined terms in the expansions (1.3.7) up to order p
inclusive, i.e. obtained the following partial sums

Yip(t,to,y):i[?ij(t,to)+njvi(r)]yi, i=12,3 (1.3.21)

1 Pr— _
Y4p (t,to,,u) = ;H—1Y4 (T) + ZI:Y4] (t!to) +HjY4 (’Z-):|:uJ .
j=0

Then solutions of systems of equations (1.3.4), (1.3.5) may be represented as

Y, (b, 1) =Y, (b, ) + A (L 1), 1=1,2,3,4. (1.3.22)

20
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Thus, if the conditions | and Il, that for sufficiently small values of the

parameter x for matrix functions & (t,) and I7,Y,(z) will we have the
estimates:
&t )| <CuP™, 1=1,2,34, telt,t], (1.3.23)
|1, (2)| < Cexp(-p2), =0,
where C, # -const.

Now from the decomposition (1.3.7) select terms which form the zero-order
approximation of the transition matrix Y (t,t,z) . Zero approximation is denoted
by Y,(t,t,, 2) . Consider the degenerate system, which is obtained from (1.3.1)
at =0

x=AM)X+A )z, 0=AMt)X+A,(t)z. (1.3.24)
If after x(t, z2) = X(t, ) + TIX(z, &) and z(t, z2) = z(t, z) + I1z(z, z) denote the
solution of the Cauchy problem (1.3.1), and through x°(t) and z°(t) solution

of the degenerate system (1.3.24) provided x(t,)=x°, then the conditions of

theorem Tikhonov, we have
X(t, 1) =x° () + O(), z(t, 1) =2°(t) +11‘Iflz(r) +0(u), (1.3.25)
MU

where te[t,,t,], il‘lflz(r) - the first term of the expansion frontier function
7]

Iz(z). Applying this provision to the problem (1.3.2), we can write the zero
approximation Y, (t,t,, £) transition matrix Y (t,t,2) , which gives a uniform

asymptotic accuracy O(w) at all of interest to wus time interval

21
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exp[]/\)(s)ds] 0

t
Yo(tity, 1) =
t-t,

U

t—t
7]

The continuity of the matrix A(t), i=1,2,3,4 on the interval [t,,t,] follows

—Aﬁ(to)As(mexp[JAo(s)ds}exp(m(to) ]Af(to)Ag(to) exp[Aa(to)

t

that at each point te[t,t ] derivative of the function M(t):j,%(/i)dﬂ, the
t()

dM (1)

upper limit is equal to the integrand function A,(t), i.e. &

A1)

We have the following

Theorem 1.3.1. Matrix Y,(t,t,, ) is the solution of the matrix differential

equation
Yo (6t ) = A (OY, (b, ), Yyt t,)=E, ., (1.3.26)
At) 0
e AR S WALAO AW A |

Proof. We represent the matrix Y, (t,t,, ) in the form

Y, (tty, 1) =VYo(t,t,, V2, (1.3.27)
jAo(l)dl
here V ( = OJ Yt )= & 0
w = _ ’ l 1/1 =
_AAl(tO)A%(tO) Em ° ’ N(to)[ﬂj
e H
_ AL 0
We introduced the notation A(t, «) = 0 A, (t,)
7]
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Then differentiating both sides of (1.3.27), we obtain

dY (tty, ) _y, d%(t,
dt d
=VA(L 1)V Yo (61, 1) = A (L )Y, (L8, 40)

Q.E.D.

tto’ﬂ)V’l =V A(t, 12)Y, (tty, )V 2 =V A, )V VYot ty, )V L =

At t=t, Y, (t,,t,)=E

n+m?

Theorem 1.3.2. If the condition (1.1.2), then the matrix A.(t, ) defines a
system for which there exists an integral manifold

Z=-A"(t)A)X+2. (1.3.28)
The movement, which is described by the system
X(t) = A ()X(), X(t,)=x°, (1.3.29)
HI(t) = A (t,)Z(1), 2(t,)=2°,
where 2° = A, (t,) A (t,)X° + 2°.

In this case, there is a limit relation |imzt,«)=0 or

limZ(t 1) =-AZ ) AG)X O =2°0).
Proof.
Indeed, the system  y(t)=A(t, 2)¥(t), yt,)=y°,  where
y(t)=col(X(t),Z(t)) in expanded form is written as
X(t) = A, (OX(), X(t,)=x, (1.3.30)

z*(t)=—Aﬁ(to)AS(tM(t)ﬂt)+%A3<to)m)+%A4(to)za), 7(t,)=2°

In view of (1.3.28) from the second equation of (1.3.30), we

obtain

23
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HE () = p1(~ A ) At X () + 2(8) ) = —2A (1) Ayt ) A DX (1) + Ay (1)R () = Ayt )X(1) + Ay (t)2
or wi(t)=A,@t,)Z(t), Z(t,)=2°, where 2°=A"(t,)At,)x’+2z° . This,
together with the first equation (1.3.30) gives the system (1.3.29) and its

solution can be written as:

X°(1) =exp([| ADDIX, 2°(t, 1) =exp(A, (L)(E-1) ] 1)2° or

Z°(t, 1) = = A (t) A (t) X7 (1) +exp(A, (L)t —1,) / 1) -
By hypothesis, the eigenvalues A (t,) matrix A,(t,) satisfy the inequality

ReA(t,)<—y <0 and x—0 we get the specified limit relations. At u<<1

(t-t)
will have the representation z°(t, ) =z°(t)+O(e” “ ), y>0.

1.4 Converting Matrix Transition on the Integral
Manifold

We now state and prove a theorem which gives a formula of the transition
matrix of the system (1.2.1) and allows you to split the state vector of the
system to slow and fast components.

Theorem 1.4.1. Let the matrices @(t,s,u) and W(t,s,u) are transition

matrices of homogeneous systems >‘<=A1>?, u-Z=A,-7 ie. they satisfy the
equations

D(t,s, 1) = At ) D(t,s, 1), D(s,s,1) =E,, (1.4.0)

s, 1) = A )Y Es,u), Y(s,8,0)=E, [ i, (142)

where matrices A (t,z) and A,(t, ) are determined from (1.1.18). Then the

transition matrix Y (t,s, ) systems (1.3.1), the corresponding system (1.1.1),

can be represented as
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Y(t,s, 1) = M (t, )G(t,s, )M (s, 1), (1.4.3)
where matrices M(t,z) and M7'(t,z) are determined from (1.1.12) and
(1.1.13), respectively;

G(t,s, p) =diag (D(t,s, 1), W(t,S, 1)), (1.4.4)

Matrix O(t,s, ) and W(t,s, ) will be called the transition matrix of slow

and fast subsystems (1.3.1).

Proof. Matrix Y (t,S, £) we will divide into blocks in the form of

3 Yl(t,s,u) 1Y (t,S,,u)
Y(t,s,y)—(Y3 (ts,u) p¥ (t,s,y)j' (1.4.5)
Then from the equation
Y (t,s,u)=A(tw)Y (t,s, 1), Y(t,s,1)=E,., (1.4.6)

we have

Y, =A )Y, + A )Y, Y(s,5,4)=E,, u¥,=A )Y, +A(1)Y,,
Y (s,8,1)=0 (1.4.7)

Y'2 = A&(t)Yz + Az(t)Yzw YZ(S,S,,u) = Em J ﬂY4 = As(t)YZ + A4(t)Y4 !

Y4(s,s,,u):%Em (1.4.8)

Now, in these systems, we make the change of variables
Y, =H(t, )Y, +Z, (1.4.9)
Y, =H(t, n)Y, +¥, (1.4.10)
where Y, =Y, (t,s, 1) , Y,=Y,(t,S,) , Y;=Yi(t,s,0) , Y, =Y,(t,s, ) ,
Y=Y(t,s,u).
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H(t, ) , Z=2Z(t,s,2) - matrices of order mxn , elements which are

regularly depend on 4. Then the system (1.4.7) takes the form:

Y = A®Y, + AOHE 2Y, + A0Z =(AQ +AOHE L)Y, + ABZ,
Y, =AY, +AMZ, Y,(s,5,4)=E,, (1.4.11)
H(H(E LY, +H )Y, +2) = AOY, + AOHE Y, + A 1Z,
(uH () + 1H (& DA )Y, + H (G ) A Z + 42 = (AR + AOHE )Y, + AMBZ
(uH (t 1)+ 1H (6 ) A )Y, + 4Z = (A0 + AOHE )Y, + (A D) — 4H(t ) A1) Z.
In view of (1.1.19), we obtain from the last equation
uZ = At )2, Z(s,8, 1) =—H(s,1). (1.4.12)
Substituting (1.4.10) into the first equation (1.4.8), we obtain
Y, = At u)Y, + A (D)W, Y,(s,5,1)=0. (1.4.13)
Differentiating function (1.4.10) over the t obtain

Y, =H(t, &)Y, + H(t, )Y, + ¥ . The meaning Y, substitute into the second
equation (1.4.8)

HH(E )Y, + uH (G )Y, + 2 = A DY, + AOH G L)Y, +A DY,

pH (L)Y, + pH (6 ) A (L )Y, + uH (& 1) A ()W + 1 =
(A () +AOHCE )Y, + A DY .

Given the ratio from (1.1.19) as a result we have an equation with respect ¥

4V = At u)Y, ‘P(s,s,y)zlEm. (1.4.14)
7]

Now we eliminate Z from the equation (1.4.11). For this we introduce the

matrix
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F =F(t,s, «) considering that the matrix H(t, ) already known

F=Y,+uN(t,u)Z . (1.4.15)
Then the systems (1.4.11) and (1.4.12) take the form:
F=A(tu)F, F(s,5,4)=E, —uN(s,)H (s, 1) , (1.4.16)
uZ = At 1)Z, Z(s,s, 1) =—H(s, 1), (1.4.17)
where matrix N(t, &) is determined from the second equation (1.1.19).

We now show that the matrices ', Z and Y, are defined in terms of
matrices @(t,s, x) and Y(t,s, ). By hypothesis 1.4.1 the matrices @ and ¥
satisfy equations (1.4.1) and (1.4.2), then the matrices:

F = ®(E, ~ uN (s /)H (5. 40) (1.4.18)
Z=—YH(s,u), (1.4.19)
Y, =j.d)(t,0',y)A2(0')‘l’(a,S,y)da, (1.4.20)

satisfy the equations (1.4.16), (1.4.17) and (1.4.13), respectively. This statement
for the first two relations is easily verified. We present the following lemma.

Lemma. Let the matrix N(t,z) (te[t,,t,], «>0) is the solution of the
second equation in (1.1.19). Then

t

1ICD(LU,#)/% (0)¥ (0,5 1)do=®(t,s, )N (s,2)— N (t, 1) ¥ (L5, ), (1.4.21)

S

Proof. Equation (1.4.21) can be written in the form

t

lJ.d)(t,a,ﬂ)Az (0)¥(o,s,u)do=—D(t,0,u)N(o,u)¥ (o, S,y)rs (1.4.22)

S
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Then from (1.4.22) obtain

d (CD(t, o, u)N (o, u)¥(o,s, ,u))
do

:—%d)(t,oz 1)A, (o) ¥ (0,5,1)-

Using one of the properties of the transition matrix, hence we have

d(N(ou))

. ‘I’(G,S,,U)Jr

—Al(O',u)(D(t,G,/l) N (o, u)¥(o,s u)+P(t,o,u)

+%Cb(t,a,y) N (o 1) A, (0 4) ¥ (0,5, 1) =—%Cb(t,a,,u)A2 (0)¥ (05, 41),

—A(t,y) N (t,,u)‘P(t,S,,u)Jr N (t,,u)‘P(t,S,y)

1~ 1
+= A (tu)¥(ts,u)+—=A (t)¥(t,s,u)=0
H H
Multiplying this equality on the right by the matrix d)(s,t,y) have

AN (1) = A (8N (8 1) = =Ry (8) = N (8 1) A, (8 2)

As a result, we obtain the second equation in (1.1.19), since by hypothesis
matrix lemma N (t, z) is the solution of the second equation (1.1.19). Therefore,
the formula (1.4.21) is true. Q.E.D.

On the basis of the formula (1.4.21), the expression (1.4.20) can be written as

Y, = ,u(cDN (s, ) — N(t,,u)‘{’). (1.4.23)

Differentiating function (1.4.21) to the ¢ and considering that N(t, z) is the

solution of the second equation (1.1.19), we obtain

Y, = uA (4 ) ON(S, ) + N(t, L) A, (t, 1)WY — uA (4 )N (L, 1) ¥
+ A ()W — N(t, ) A, (t, 1) ¥ =

= pA 1t )(ON(s, 1) - N(t, 1) P) + A ()Y = A (t, )Y, + A, (D).
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At t=s rom the (1.4.20) it follows that Y, (s,s, ) =0.

From the relations (1.4.9), (1.4.10), (1.4.15), (1.4.18), (1.4.19), (1.4.21) we
have: Y, = ®(E, — uN(s, t)H(s, 1)) + uN(t, ) PH (s, 1) ,

Y, =®N(s, 1)~ N(t, 1) ¥,

Y, = H(t, ) ®(E, - uN(s, s))H (5, 1)) ~ (B, — uH (ts)N(t 1)) PH (s, ), (1.4.24)
1
Y, = H(t, £)®N(s, 1) +;(Em — uH(t, )N(s, 1) Y.

Substituting the values of Y; (i=1,2,3,4) from (1.4.24) the right-hand side of
(1.4.5) we obtain (1.4.3). Q.E.D.

It should be noted that the system (1.2.1) may be replaced by an integral
equation (Cauchy formula):

y(t, 4) =Y (t,5,2)y(s, ,u)+jY (t,s, 12)B(s, z)u(s, w)ds +jv(t,s, ) f (s, p)ds . (1.4.25)

Using the relations (1.4.3), (1.1.26) from (1.4.25) can be easily obtained
integral equation, which is equivalent to the differential equation (1.1.25)

§(t, ) =G (t,t, 1) ¥ (s, y)+jG(t,a, 1B (o 1)u(o, y)dmje(t,a, u)f (o, 1)do (1.4.26)

where B(t,z)=M"(t,u)B(t, 1), T(t,u)=M"(t, 1) F(t, 1), °=9(t;), is

transition matrix G(t,t,, ) determined from (1.4.4).

Now suppose that the matrices d(t,t,,«) and ‘P(t,t,, 1) are transitional
matrix of the system (1.1.22) and (1.1.23). Along with the system (1.1.22) and

(1.1.23), we consider another system

X = A (DX + B, (0T + f, (1), X(t,)=X°, X(t)=%", (1.4.27)
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1Z. = AWZ +B,OT + (), Z()=7", Z(t)=2",
where

AMD=AD-ADOA OAR), B () =B 1)-A 1A (1)B,(),
fo ()=, (1) = A ()AL () f, (1), 2. =7+ AAX, (1.4.28)

X,Z - vectors of state variables of the degenerate system, which is obtained

from (1.1.22) and (1.1.23) at & = 0. Have the following theorem.

Theorem 1.4.2. Let A, (t), A,(t) - stable matrices and corresponding to

them transition matrices satisfy the inequalities

Dt t)]| < cexp(—m(t—t;)), [(t.t,, )| <cexp(—yt—t,)/ ). (1.4.29)
Then at m>1, O< <y, <1 and t, <t <t the eigenvalues value matrices
A(t, ), A,(t, 1) will be <close» to the eigenvalues of the matrices

A, (), A,(¢), in the sense of negativity their real parts, where

yozmin{i /4 } (1.4.30)

dc' dc

d= max L|A(0)] d,= max L,|A(0)|. (1.4.31)

ty<s<o<ts<t, ty<s<o<t<t,
At the same time we have the estimates:

(.t 1) <cexp(—-m(t—t,)), [¥(t.t,, )| <cexp(—p(t—ty)/ 1), (1.4.32)

where the m, =m-1, y, =y — ud,c, c,m,y - positive constants,

O(t,t,), P(t,t,, 1) - transition matrices slow and fast subsystems (1.4.27).

Proof. Let
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H(t, 1) =—A O A®) + uh(t, 1), (1.4.33)

where the h(t, «) satisfies the matrix equation

ph(t, 1) + ph(t, 1) Ay (t 1) = A (8, 1) + A, (L 1)L, ),
A (L, 1) = Ay (1) + 1A, (DN, 1),

A )= %(Aztl(t)As(t)) +ATOADA WD, AL =A0+aA OADAR -

In view of (1.4.33), matrices A (t, x), A, (t, 2) are defined as

At 1) = A1) + uA, (O, ), (1.4.34)
A () = A ) + 1A ) AR A ) — 1°h(L 1) A (L, ).

As shown in 1.2, matrix H(t, 2) is the solution of the integral equation (1.2.1)
and defined as the limit of a sequence of continuous functions in a closed

interval [to,tl], then can specify the number of g such that 0< g <4 in the

interim [t,,t,] there are limitations:

IH @<L, het ) <L, (1.4.35)
where the L, L, - positive numbers. Transition matrices @(t,t,,«) and

W(t,t,, ) may be represented in the form:

D(t,ty, ) = Dt ) + pp(t b, 1), (kg ) = P (Lt 1) + pnp(t. e, 1), (1.4.36)
where the o(t,t,, ), n(tt, ) - matrices functions, ®(t,t,), P(t,t,,z) -

transition matrices slow and fast subsystems (1.4.27).

The process of determining the functions ¢(t,t,, 2) and 7(t,t,, «) leads us to

clarify the main question: for sufficiently small values of the parameter 1, the
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eigenvalues of matrices A (t,z) and A,(t,z) will indeed be close to the
eigenvalues of the matrix A (t) and A,(t) respectively.

We assume that Aj(t) and A,(t) - stable matrix. Then the corresponding
transition matrices satisfy the inequalities (1.4.29). By assumption, the matrix

O(t,t,) and P(t,t,, ) satisfy the equations:

B(t,t,) = A ODEL), Ot,t)=E,, (1.4.37)

1Pt 1) = AP ), Pt ) =E, [u.  (14.38)

Then, taking into account (1.4.33), (1.4.36) from the (1.4.1) and (1.4.2),
obtain

ot b, 1) = A (OP(t,ty, 1) + A, (DN, 1) (D(t ) + ot by, 1)),
o(ty,t, 1) =0, (1.4.39)

(b, 1) = A On( 1, 1) — HE ) A O (P L, )+ Lt 1))
1(ty by, 22) =0. (1.4.40)

Equations (4.1.39) and (4.1.40) are equivalent to the following integral
equation:

oty 1) = [B(t,0) A (0)N(0, 1) (Bloty) + (o ty, 1)) do, (1441

t

n(tt, 1) = %j‘?(t,a,ﬂ)H (0, 1) A (0) (P (0 ty, 1) + pm(oty, 1) )do. (1.4.42)

f

We now define two sequences:

oo (tity, 1) = j&)(t, o)A, (o)h(o, ,u)q_)(O',to)dO', (1.4.43)

32



The Optimal Control Algorithms in Systems with Different Rates of Motion

o (g, 1) = @y (L1, 1) + ﬂj&)(t,G)Az(U)h(G, we (o, 1)do,

to

oty 1) = % [P0 M Aot o 14.44)

n (L, 1) =17, (L4, 22) +J.‘¥’(t,0', wWH (o, 1) A, (o), (o1, 1)do.

t

Investigate the convergence of the sequences (1.4.43) and (4.1.44).

We introduce the notation in the form (1.4.31). Now we estimate the total
members of the following series:

Do+ (0= Pos)r Mo+ 2 (11— 10n). (1.4.45)
n=1 k=1

In view of (1.4.31) from the (1.4.43) obtain

| < d,C? (t -t ) exp(—m(t —t,)).
[ — @0 < e ((t—t,) / 21)exp(-m(t —t,)).

By induction, we obtain the inequality
||¢n _(pn+1|| < ﬂnd;+lcn+2 ((t _to)n+l / (n +l)!)eXp(_(t _to))-

Of these estimates imply that the first row of (1.4.45) converges at

u<1/(d,c), and evenly and as a majorant series supports a number of
d,C° (t—ty +(t—t,) / 24 (t—t,)* /3L ...+ (t—t,)" / nk+ ... )exp(-m(t —t,))
which is the sum of d,c?(exp(t—t,)—1)exp(-m(t—t,)).

Consequently, there ¢(t,t,) - limit of the first series (1.4.45) exists. Function

#(t,t,) satisfies to the equation (1.4.41) and it satisfies the inequality
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o] < d,c? (exp(t —t, ) —L)exp(-m(t —t,)), (1.4.46)
At <1/ (d,c).
Similarly, from (1.4.37), we have ||, ] < 1/ z)d,c* exp(—(y(t —t;))/ ) and
77, =102 < @1 20)d7 ™ (£ = 1) 1 (n+1)!)exp(—(r(t—t,) / ).

Then there 7(t,t,, ) - limit of the second row (1.4.45) exists. The limit
function 7(t,t,, ) at x>0 is a solution equation (1.4.44) and in this case we

obtain the estimate

7] < (c/ ) (exp(dic(t—ty)) —L)exp(—((t —t,))/ ). (1.4.47)

Now, using (14.29) and (1.4.46), (1.4.47) from the (1.4.36), obtain (1.4.32).
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Chapter 2

Research Controllability and Dynamics of

Movement Singularly Perturbed System






In this chapter is formulated the criterion of controllability using properties of
the operator Gramm, and to deal with the evaluation of the standard deviation of
the trajectory of motion of the system.

2.1 Controllability Singularly Perturbed Systems of
Optimal Control with Constantly Acting
External Forces

Here is investigated the properties of controllability of the system (2.1.1) with
the help of operator Gram transforming infinite space in finite. Let the
controlled process is described by the equation

y=A(t,u)y+B(t, )u+ f(t,u), (2.1.1)
y(tg ) =y° (2.1.2)
y(t,u)=y (2.1.3)
A A o o
where A(t, i) = Az_(t) A3_(t) . B(tu)= zﬂ L ()= 2# ,
)z Iz

X
y= ( j eR™™ xeR" , zeR™ - state vectors, neC*[t,t],
( C*[t,.t,]— infinite space), f (t)eR", f,(t)eR™ constantly operating
outside forces; te[ty,t,], «>0— small parameter (0< x<1).

States x=X(t,x), z=z(t, ) are slow and fast motion of the system

(2.1.1), respectively. We assume the following assumptions regarding the

parameters of the system (2.1.1):
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1. Matrix A (t) (i=1,_4) - identified uniformly bounded and uniformly

continuous with their derivatives.
2. All eigenvalues of the matrix AA(t) have negative real parts for all

tet,t].

For linear systems usually criterion controllability are formulated using the
properties of a linear operator [4].

First, consider the simplest case when the matrix A(t,,u) in the equation of

the system (2.1.1) is equal to zero matrix. Then the dynamics of the system
described by the equation

y= B(t,,u)u + f (t,,u) . (2.1.49)
We pose the problem of the choice of control u(t)=u(t, ), which would

ensure at the time satisfy the boundary conditions (2.1.3). Considering the
conditions (2.1.2), (2.1.3) from the equation of motion (2.1.4) obtain the

y'=y° +_|1'B(t,y)u(s,y)ds+.|1‘ f (s, u)ds. (2.1.5)
b

fo

b
Then the expression L(u):jB(t,u)u(t,y)dt can be viewed as a linear

f
operator acting from the space Cr”[totl] to R™™. Because is required choose

the control u(t,,u) , which would satisfy the condition (2.1.5), it is easy to see,

b
that if y'—y° —j f (s,4)ds lies in the region of the operator L(u), then the

fo

desired transition to the state y(tl) =y available. Otherwise - is not. Therefore,
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to check whether state-controlled necessary to establish, whether it is in the

region values of the operator L(u).

Control u(t)=u(t, ), which transfers status of the system (2.1.4) from y°

4
at t=t, to y* exists only when the vector yl—y°—jf(s,y)ds lies in the

f

region values of a linear transformation

W(to,tl,y):iB(s,,u)B'(s,y)ds (2.1.6)

f

At one of the controls that translates system from one state into another and
has the form:

u(t, ) =B'(t, 1)7m (2.1.7)
where 1 is any solution of the equation
t1
W(to,tl,,u)nzyl—yo—jf(s,y)ds. (2.1.8)
fo
Now we move to a system of general form (2.1.1) when A(t,y) #0.

Integrating the equations of motion of the system (2.1.1) gives

y(tu)=Y (tt,, 1)y’ + }Y (t,5,1)B(s, )u(s, u)ds +i1[Y (ts,u)f(s,)ds, (2.1.9)

fo fo

where Y (t,s, u) - transition matrix for the equation

y=A(tu)y, y(tu)=y° (2.1.10)
At t=t, taking into account (2.1.3) from (2.1.9) we will have equation of

moment [42].
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a(#):]_Y (t,,s,4)B(s, )u(s, u)ds (2.1.11)

t0
4
where a(u)=y’-Y (to,tl,u)y’—IY (ty, S, 4) f (s, 1) 0s.
t

Theorem 2.1.1. For system (2.1.1) if and only if exists a control

u(t)=u(t,z), which transfers from state of the system (2.1.2) to the state

(2.1.3) at t=t, >t;, when the vector a(,u) belongs in the field of the values of

the linear transformation

W (t, b 22) = [¥ (t,5,2) B(5, ) B (. 0)Y (o5, 0)ds . (21.12)
t

At that control

u(t, z) =—B'(s, )Y (to,ti, 2) o (2.1.13)
is one of the controls to ensure this transition, where the vector . is determined

from the equation

W (to,t,, ) Yo = (). (2.1.14)
Proof. We introduce the change of variable
n(t ) =Y (t,,t, 1) y(t, ). (2.1.15)
Then by the properties of the transition matrix will be
y(tu) =Y (tt, 1) (t, ),

Y (ttg, )77 (t, ) +Y (.8, 1) (t, 1)
= A(t, 1)Y (tty, ) m(t, )+ B(t, p)u(t, )+ £ (t, 1)
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or

Y (tty, 1) 77(t, 20) = B(t, zr)u(t, )+ f (t, ).

Multiplying this equality on the left to matrix Y (t,,t, 2) obtain the

it ) =Y (tot, 1) B(t, )u(t, ) +Y (to,t, 20) T (8, 12). (2.1.16)

If reasoning as in the previous case, control u(t, z2) exists if and only if the

set of values that can take the

(ts) (bt [Y (t5,0)  (5,0)08

tO
belongs to the region of values of operator

W (ty,t, 1) = ]I.Y (ty,5,2)B(s, 1) B'(5, 1) Y'(t5,5, 1) ds. (2.1.17)

fo

Then the desired transition is possible, if we to require that there has been a

U(E,ﬂ)—n(to,y)—lj\( (to,5, ) (s, 0)dls

fo

=Y (ty. b, p) Y - y° —]1-Y (to,s, ) f(t, )ds =—ar ().

t
This means that the desired transformation is possible if and only if the vector
a(u) for each x>0 lies in the region values W (t,,t,, ) and one of the
control providing this transformation is a control (2.1.13), g.e.d.
It follows from this theorem that if 0<x<1 and a t, for all t matrix

W (t,,t,,2) has maximal rank, then the system (2.1.1) is completely
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controllable. Matrix W (t,,t,, z2) in shape (2.1.12) at x>0 has the following

properties [65]: it is symmetric, non-negative, defined for t, >t, and satisfies:

a) matrix differential equation

W (tt, u)= At )W (Lt a) +W (L6, ) A (L) -B(Lu)B (L a). (54 4g)
W (t,t, 4)=0

b) functional equation
W (to,ty, 0) =W (to,t, ) +Y (o, t, )W (81, )Y (Lo, 8, 2¢).  (2.1.19)
If we introduce in the form of a block matrix
Wit ) Wo(tt, u)

W(t,tp/u): Wzl(t!tl'/u) 1W3(t,t1,,u) ,
7,

(2.1.20)

then the equation (2.1.18) can be rewritten as a system of three linear singularly
perturbed equations are not separated variables:

W= A (DW, + A, (W, +W, A (1) +W, A, (1) - B(1) B, (1),
N, = pA (W, + A, (D)W, +WA, (1) +W,A, (1) - B, (t)B, (1),  (2.1.21)
PN = g (D)W, + A, ()W, + 20N, A, (1) +WaA, (1) + B, (1) B, (1),
Wi (tt, ) =0, Wy (t,t, 12) =0, Wi(t,t, 1) =0 (21.22)

Theorem 2.1.2. Let matrix H=H(t,z), N=N(t,x) are solutions of

differential equations

—pH = uH(A (1) + A () H)+ A (t)+ A (t)H =0, (2.1.23)
uN = pH (A (t)+ A (t)H)N + N (A, (t)— uHA, (t))+ A, (t)=0. (2.1.24)
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Then the matrix
~ tl ~ ~
W (t,t, 1) = [G(t,5, 1) B(s, 1) B' (5, )G (1,5, 1) s (2.1.25)
t

satisfies the matrix differential equation

W = A(t, )W + WA (t, 1)~ B(t, 1) Bl (t, t), (2.1.26)
where
A(t, 1) =M (t, 1) (At )M (t, 12) =M (8, 1)), (2.1.27)

I§(t,,u)= M_l(t,,u)B(t,y),

M(t )_ En _IUN(thu)
T HEw B, -uHE NG )
~ (D(t,s,,u) 0
G(t’s’“)‘{o ‘P(t,s,y)]'

®(t,s, 1), ¥(t,s, ) — transition matrices of homogeneous equations:
X=(A()+A{)H ()% pZ=(A(t)-uH(t u)A(t))Z respectively.

Proof. In the matrix equation (2.1.18) we introduce the change of variables in
the form of

W =M (t, ) WM'(t, u). (2.1.28)
Then in view of (2.1.28) from (2.1.18) we have
MWM' + MWM’ + MWM ' = AMWM ' + MWM A’ + BB/,

MWM ' =(AM —M WM’ + MW (MA'~ M)~ BB"
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Multiplying the left by the matrix M ™ and the right to M’'™ we obtain the
equation (2.1.26). When the condition of the theorem matrix

A(t,,u) =M (t,,u)(A(t,y)M (t,,u) -M (t,,u))
is a diagonal block matrix, i.e.
A -AMOH ) 0

At u)= 0 %wm— HHE W AWD) |

We calculate the derivative of the function W (t,t,, ) by t

W :%@G(t,s,y)é(s,y)é’(s,y)G’(t,s,y)dsJ:

—Ig(t,,u) é’(t,,u) + A(t,,u)]l‘G (t,s,u) E(S,,u) B'(s,1)G'(t,s, 1t)ds +

+i1fG(t,s,,u) B(s,,u)é'(s,,u)G'(t,s,,u)dsA’(t,,u)
= A(t,y)W +V\7A'(t,/1)— |_5>(t,/1) B'(t,,u)

g.e.d.

As in the previous case, if you enter the block matrix

Wl(tvtlvﬂ) V\le(t’tlllu)

) V\~/2'(t,t1,,u) i
Y7,

W (t,t, 1)

Ws(tvtp/”

then the equation (2.1.26) can be rewritten as a system of singularly perturbed
three equations with separated variables

W, = A (t )W, + WA (t, 1)~ By (t, ) BI (1, 1),
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N, = A (t )W, + WA, (8, 1) - By (L) B (L), (2.1.29)

Wy = B (t, )y + WA (1, )~ B (t, ) B3 (1, ),
with the final conditions
Wt 22) =0, W, (8,1, ) =0, Wy (8,6, ) =0, (2.1.30)
where A (t, )= A (t)+ A ()H (), A (t )= A, (t)+uH (8, ) A (1),

Equations included in the system (2.1.29) does not depend on each other and
their solutions are matrix

V\~/1(t,t1,,u)=]I.CD(t,S,,u)él(s,/l)él(s,,u)d)'(t,s,,u)ds,
W, (t,t,, 1) = I(Dt s, 1By (5, 12)Bj (5, 1) (t, 3, ),

(t t, ,u J“P t,s, ,u)l§1(s,u)l.5>2’ (S,,u)‘P(t,s,,u)dS,

at 42— 0 for matrix W, (t,t, ), W, (t,t, ), W;(t,t, ) we have the following

limit relations:

W, (4, ), > Wa (), W, (4t ), > W (t), Wy(tt,z),—>Ws(t),
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uniformly in tet,,t; |<[t,.t,]. Matrix v_vl(t)=tj5(t,s)50(s)5(;(s)@(t,s)ds

is the solution of the matrixt differential equation

W = A (t)W, +W, AL ()= By (1) By (t), W (t,t,)=0,

where A, (t)=A ()= A () A (1) A (), By(t)=B,(t)- A (t) A (1)B, (1),
W, (t) =B, (1) B; (1) A (1),

W (t) = [ ~O7B, (1,) B (t)e ¥“"do,
0

is the solution of algebraic equations

A, (W (8) -W (1), AL (1) = B, () B; (1)-

2.2 The Criterion Controllability of Movement of
Singularly Perturbed System

As shown in the preceding paragraph, after transformation gramiana
controllability we received matrix (2.1.25). The structure of the matrix is not
changed and as gramiana controllability can take the matrix (2.1.25). As in the
previous case, if enter the block matrix

Wl(t'tu/l) Wz (t’tl':u)

W (t,t, ) = W (L, ) =W, (4t ) |

1 (2.2.1)
Y7,

then the equation (2.1.26) can be rewritten as a system of singularly perturbed
three equations with separated variables
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)
Wi (t,t, 1) =0, W,(t,t,4)=0, W(t,t,4)=0, (223)
where W, =W, (t,t, 1), W,=W,(t,t,u)— symmetric matrices sizes

N> Nand MxM respectively, W, =W, (t,,t,, #)— matrix size n>m,

A(tu)=A)+A(H(L L), A(tu)=A )+ aH(t L) A (L),
B, (t,12) =B () + N(t. 1) (B, (t) - 4 (t, 1) B, (1)),
B, (t, ) =B, (t)+ uH(t, 1)B,(t).

It should be noted that under the conditions of theorem 2.1.2 the initial system
(2.1.1) can be replaced by an equivalent system (1.1.25). Such a change is

possible, since the matrix integral manifolds H =H (t, ), N=N(t,z) as the

solutions of equations (1.1.20), (1.1.21) there are exists and unique (see chap. 1).

Then we can formulate the following theorem (analogous to theorem 2.1.1).
Theorem 2.2.1. For the system (1.1.25) at £ >0 if and only if there exists a

control G(t)=0(t,x),  which transfers the system from the initial state
y(to,ﬂ)= §° to the final state )N/(t1 ,,u)= ' (see 1.1.24) at t=t, >t;, when the

vector & () =M (t,, 1) () belongs in the region of values of the linear

transformation

W (1o, 1) = [ G (b5, )8 (5,4) B (5, 0) G (ty 5, 1) 5. (2.2.4)

f
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At the same time the control
G(t, 1) =—B'(t, )G’ (t,,t, ) §. (2.2.5)

is one of the controls providing this transition, where the vector is determined
from the equation

W (t,,t, 22) 5. =& (1), (2.2.6)
where
a(u)=M7(t, u)a(u)=M7(to, 1) y* =G (to,t,, )M ™ (1, ) y*

+J1.G(t0,S,,U)M (s,u) T (s m)ds.

L5}
As shown by the formula (2.2.6) if the matrix W (t,,t;, 1) has maximal rank,
then the control system provides translation (1.1.25) from the initial state
(to,yO) to the final state (tl,yl) and system (1.1.25) (and simultaneously the

system (2.1.1)) is considered quite controllable. Therefore, our the nearest goal
is to deduce from the system of equations (2.2.2.) the conditions that provide

full controllability of the system (2.1.1.).
For sufficiently small values z¢, of the equations obtained with respect W,

and V\~/3 are singularly perturbed. At #=0 we have no disturbed (degenerate)

system
A (O, +VT.A (1) B, (1)B; (), W (t,.t) =0,
:vv/w S (1)8; (1), @27
0= A, (&)W, +W,A; (t) - B, (t)B; (),
where A, (1)=A (1)~ A (DA (DA (L), By (1)=B,(1)~A (A (1)B (1)
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The solution of the degenerate system approximates the solution of the

problem (2.2.2), (2.2.3) with precision O(x), and for W, and W, this is true

outside the boundary layer [45], i.e. at away from the point (H,O) .

Since we are interested in the values of submatrices W, (i=2,3) at the
point t =1y, so the value of W, (i=2,3) at the point t =1y, substitute values

of submatrices W, (i =2,3) at indicated the point with an accuracy O(x).

At t=1, from (2.2.7) we have a matrix algebraic equations with constant

coefficients. From the second equation can be determined immediately

W, (t,.t,):

W, (t,t,) =B, (t,) B; (tO)A:lil(to) (2.2.8)

The equation for Ws(to,tl) is the equation of Lyapunov:

A, (t )W, (to,t) + W, (t, 1) A (t,) =B, (1) B; (t,) (2.2.9)
Since the proposal for the real parts of the eigenvalues values of matrix
A, (t) negative for all te[ty,t], then the solution of the Lyapunov equation

can be represented as a convergent integral [45]

0

W, (t.t,) = [e B, (t,) B} (t, )e " dr (2.2.10)
0

solutions (2.2.8) and (2.2.10) may be obtained by other ways. Let’s show it.

Decision matrix equations (2.2.2.) can be formally represented as [45]
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W (t,t, ) = I o(t,5, 12)B, (5, 12)B,(s, )0 (t, 5, 12)ds, (2211)
W, (t,t, 10) = %jq)(t, s, u)By(s, w)By(s, ) (t s, w)ds,  (22.12)

~ 1h ~ ~
W, (tt, )= P [(t,s, B, (s, 1)B; (s, 10)¥'(t,5, ). (2.2.13)

At u—0 matrix W, (t,,t,z)— (2.2.11) tends to the solution of the first
equation of the system (2.2.7), i.e.
1)~ [0 B sk @214
where ®(t,s)— transition matrix for the homogeneous equation
X(t)=A (DX (1),
A=A -AMA ()A), B(t)=B(t)-A(t)A(t)B,(t).

. . t-t
We introduce a new variable 7 = —2

to (2.2.12), (2.2.13) we note that at

sufficiently small 4 matrices A, (t, +7),  Bo(ty +71), B, (t, +71)
are slowly varying functions in the space and they can be replaced by constant

matrices A, (t,), By(t,), B,(t,) [45]. Then at x—0 , (r —w) for matrix

W (t,t,, ) (1=1,2,3) at the point t =1, has the following limit relations:
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W, (t, 4, 1) > W, (5,8 = tqu(to,s)BO (5)Bg(s)@'(t,,s)ds,

W () W (1) B (1) B (1) A (1), @219
() VB (1) = [ B, ()81

0

t

Lemma. Let matrix W, and W, are nonzero, then at x—>0 vector
a =d(y) will be finite value if and only if the last m components of vector

Y. at £ —0 tends to zero.

Proof. Let the vector & limited, i.e. exist a number M, that
\o?i\ <M (2.2.16)

for all i=1,2...,n+m. From (2.2.6) we have the following relation
W (t,,t, ) = V. (2.2.17)
Using the formula the Frobenius [13] ratio (2.2.17) is written in the form
( wl, ﬂwzj ﬁlJ = (%J (2.2.18)
Ho, uw, )\ o, Z.
where @ =P, @, =—PW, -W,", @, =W," — £, W P W,W,",
P=W, — W, Wy, @ = (t,,t, 1),i=12,3; o, % —N—

dimensional, &,,Z. —M— dimensional vectors. From (2.2.18) we obtain the

V*(u){f*j:( Qi T O j (2.2.19)

Z wle', @, + o)
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By the condition of the Lemma, the matrices vvl,vvs_ are nonzero and
reversible. Then for sufficiently small 2 >0 matrix a),(i=1,2,3) exist at

1 —0 from (2.2.19) we have

9.6 5.0 "<

Prove the converse, let the last M components of the vector ¥.(x) at 4 —0

tends to zero. It means that M - dimensional vector ~ Z , (££) has an estimate

2 (1)|=0(n)
Then the vector Z, () can be represented as

Z(u)=p B(n), |B(u)| <M, M~const . (2.2.20)

Considering (2.2.20) from (2.2.17) we get
N W, X, + W
0{(/1)2( 1~'~ H ~2,8j'
W,X. +W, 8

Then for £ —0,

) gr
u WK WG (2.2.21)

ie. vector @(wm) at wu—>0 is the ultimate value, where

X, —nN, m— dimensional vectors, respectively, which do not depend

on 4. The lemma is proved.
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When the condition of the lemma from (2.2.6) we obtain the following

equation for the submatrices W, W,:

W, X =&, (2.2.22)

*

B=a, (2.2.23)

2

Where

a=x-@(t,t)x', a, =a,-W, X
a,=2"+A" () At) X
These relations can be seen at once that for sufficiently small >0,

controllability of the two sub-systems of smaller dimension type

X(t)=A ()X (t)+By(t)u(t)+ f(t) wZ=A(t)Z+B,(t)u+f,(t), (22.24)
where  f,(t)=f (t)—A,(t)A;'(t) f,(t), should be controllability the

complete system (2.1.1). Then from the position of the application of properties
of linear operators controllability criterion for the system (2.1.1) is formulated

in the following theorem.

Theorem 2.2.2. For the system (2.1.1) if and only if there exists a control

u(t)=u(t,z), which transfers the system from state (to, y ) to state(t,, y* ),

*

when vectors @, =x° —®(t,,t,)X", &, =a, —W, X. belong to the

region of values of linear transformations

VEqu):}é(gs)Boﬁ)Bg()é(g,gd (2.2.25)
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W, (t.4) = [e OB, (1) B (1, )e ¥ dr. (2226
0

Respectively, in addition, if 3%.©, B°- or a solution of (2.2.22) and
(2.2.23), it is possible to define control u=u, (t) which depending on the time
of the partial movements mutually independent sub-systems is described by
different analytic expressions and provides this transition to an accuracy O(u),

i.e. it is written in the form

(2.2.27)

t-t  _
where 7=—2, 0’
U

Note that if the vector ¢, belongs to the region of the linear transformation

(2.2.25), the first subsystem of the system (2.2.24) is completely controllable.

To prove this part of the theorem is not difficult.

Proof. The prove of the theorem hold for fast subsystem of the system (2.2.24)
by means of a change of variable

Ai(to) ot
n(t,u)=e ( “ )Z(t,,u). (2.2.28)
Then
. Alt (ﬁ]
Z(t,u)=e “In(t ) (2.2.29)
. A(to) o . Ato) S
and Z(t, 1) =¢ [ ! Jﬂ(tvﬂ)“‘—A ()€ [ ! jn(t,,u)
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Substituting the value of 7 (t, y) to the fast subsystem (2.2.24) with (2.2.28)
and (2.2.29) we obtain

from whence

) Ay(to) >
uni(t,u)=e [ “ ](BZ (to)u(t)+ f,(t)) (2.2.30)
We introduce a new control

u(t)=0(t)+V (), (2.2.31)

t —_
where 7 =-2
7]

Z_Z = MOB, (1) (t, ) -e MOV B, (4, V (7) - ML (4)  (2.2.32)

The solution of the equation can be written as
n(z) :’7(0)_9_&(%)151 (tO)(B(tO)U(tO)+ f, (tO))
AL G)(B(L)U(L)+ ()~ [ B, (6)V (s)ds.

(2.2.33)

With the change of variables

7 (r)=n(z)+e AT, )( (t Ju(t,
77*<0):77(0 tO)(Bz + f, (to))

~
+
—h
—~
—+
S
SN—
~—

from (2.2.29) we obtain

2(r) = ()= ey (7) =A™ (t) (B2 (t)u(t) + T (1))
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or Z(z)+ A (1) (B, (1) )u(ty)+ f, (1)) = ey’ (¢), from whence

7 (r)=e ™ 2(0)+ A1) (B (bu(t) + f (%)) | (22.34)
From the previous lemma is well known that the control u, (t) , which

translates the state of the fast subsystem (2.2.24) of the z° at t=t, to ' at
t =1, exists if and only if the vector "(0)-7"(z) belongs to the region of

values of the matrix W, (t,,t, ) in (2.2.26).

To complete the desired transition, require that

7 (0) =17 (5) ==& B (v (s)ds. (2.2.35)

0

Then one of the controls providing in the unmentioned transition of system
has the form

V (7)=—Bj}(t,)e @ 57, (2.2.36)

where 4" is determined from the equation

_tO
)7

77*(0)_77*(71) :V\_/s (tO’t:L)ﬁ* y O = f

Corollary 1. If the matrices (2.2.25), (2.2.26) have maximal ranks, then the
system (2.1.1) is completely controllable.

Corollary 2. In the stationary case:

a) the operator W, (l’i,to ) (2.2.25) has full rank for any {, >t ;

b) the operator W, (t,,t,) (2.2.26) has full rank if the symmetric matrix B,B;

is positive definite.
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2.3 Estimation of the Standard Deviation of the Trajectory
of the System of Movement

In this section is solved the problem of estimation of the standard deviation of
motion of a singularly perturbed system. The main requirement for closed-loop
system is the system to return to the zero from any state, and the value of
criterion quality along any such motion should be minimized.

Consider the quadratic functional

J :tjy'(t)w(t)y(t)dt (2.3.1)

where w(t)= (Wl WZJ.

W, W,

In the closed-loop optimal trajectory of system is described by homogeneous
equations. Therefore avoiding complex analytical expressions and extra

notation we restrict homogeneous equations, which are obtained from (2.1.1) at
lKLy)ZO,ﬁ(Ly)zo,B(Ly)zo
By virtue of the equations of motion

X(t)=0(t,to ) X(t,), Z(t)="P(t.t,, )Z(t,) we have

J =j Y (1) (.t )W (1) G (1, t) ¥ (b )dt = 7' (& )V (L1, 4) Y (&), (2:3.2)
where

G(t,tovu):[q)(tgo'ﬂ) T(t’i}ﬂ)’], v(t,to,y)zie'(t,toﬂ)w (1)G(t,t,)dt, (2.3.3)

_ E, -—-uN
where W=MWM, M= .
H E.,—u«HN
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Thus, the target value J is a quadratic form ¥(t,), and V (t,t, x)— its
matrix. If there are known transition matrices ®(t,t,, 1),  W¥(t,t, ), then

the matrix V(to,g,y) can be calculated using the formula (2.3.3). One can
show other methods of calculation. This problem can be reduced to the solution

of a linear system with singular perturbations, replacing t, to t and

differentiating expression for the V (t,t,, z2) by t we have:

d df} .
—V (t,t,u)=—| | G'(s,t, )W (5)G(Ss,t, u)ds
Wit g feGuiens]
=-A()V (t,t,2) -V (t,t, 2) A(t)-W (1).
From the definition V (t,t,, ) it follows that V (t,,t,, 1) =0.
The matrix V is divided into blocks
vz[vl, ”sz (2.3.5)
Ny 1V,

and the equation (2.3.4) in the form of the system three matrices equations:

v, = _A; (Vs _Vl'&i(t) -W, (t), Vi(t.t,)=0,

N, =—uR (), =V, A, (1) -W, (1), V,(t.4)=0, (2.3.6)

,le3 = _Az: ('[)V3 -V,A, (t) _Ws (t)’ Vs (t'l’tl) =0,
which can be solved independently.

Note that the boundary conditions of differential equations are given at the
not initial time but at the end of the process.

Thus, the following theorem holds.
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Theorem 2.3.1. If the blocks of matrix V are the solutions of differential

equations in (2.3.6), and X(t), Z(t)— solutions of the system

X=

;Px

(1), uZ=Aat)Z at t, <t <t then the formula is true

Y

[9/(tW (©)7()dt =" (t )V (to, b, 22) § (t), (2.3.7)

fo

where y(t):y(t,y)z(i(t'ﬂ)j.

Z(t, p)
Limit task (at u—0) for (2.3.6) has the form
Vi =-A OV -VIA (1) =W, (t), Vi(tt;)=0, (2.3.72)
0=-V,A, (t)-W,(t) (2.3.7b)
0=—A (t)V; — VoA (1) - W5 (1),
where A (t)=A(t)—A (t)A™*(t)A(t),
W, (t) =W, + HW, +W,H, + HW;H,,
sz :W2+H(;\N3’ Vvs =W, HO:_AA_lAB'
For small x are possible various ways to construct an approximate solution

of the system (2.3.6).

At the basic of the approximate solutions lie solutions "systems of fast

movements."
dv, — = = = =
o = HAV VoA W, Y (0)=0, (2.3.8)
AV e o
_de =-AV; -V;A -W;, Vs (0) =0, (2.3.9)
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where A=A ()~ A (b +2u), A (L +m)= A (L) =A,

W, (4, + 220) W, (t, + 720) ~ W, () =W, i:(2,3),r=%,
A=A-AATA.

Solutions (2.3.8), (2.3.9) are satisfying the zero initial conditions have the
form

5 0 _#;{(T_E)l _
V,(7)= je W,e 4do, (2.3.10)
5 0 _AA(T_d)l _
Vi(7)= Ie W,e ™ “do, (2.3.11)
Consider the equation
~UAS, = 5,A, ~W, =0, (23.12)
—A5, —S,A, -W, =0, (2.3.13)

It is easy to show that if the matrix A, stable, then the matrices

5, =J’e”A1'SW2eA“Sds, 5, =J.eA"‘SW3eA4Sds
0 0

are the unique solutions of the equations (2.3.12) and (2.3.13) respectively. If
the solution (2.3.10), (2.3.11) at 7 — —oo tend to solutions of the equations
(2.3.12), (2.3.13), then the well-known theorem Tikhonov, we can say that the
initial value (V,(0),V3(0)) = (0,0) belongs to the region of influence of the rest

point (2, 93).
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This raises the question: which kind of conditions the functions V2,V at

7 — —oo tend to solutions of the equations (2.3.12), (2.3.13)?

On this task a positive response given by the following theorem.
Theorem is given for (2.3.11) and (2.3.13).
Theorem 2.3.2. Let A, - stable matrix. Then V;(7)—> 6, at 7 ——o, if and

only if the equality

0
j eNW,erdo =eM 5,eM 6, (2.3.14)

T

where J, - solution of the equation (2.3.13).

Proof. Let the equality (2.3.14) function \73 is written in the form
0

Vy(r) = [eNW,edoe A (2.3.15)

T

Considering (2.3.14) from (2.3.15) we obtain
0 p—
e A j MW - do-e ™ =5, —e ¥ se M. (2.3.16)
Since by hypothesis of theorem the matrix A, is stable and from this follows
that for 7 ——o0 V,(7) = .

Suppose now, on the contrary: \73(r)—>53 at 7 ——oo, where ¢, — solution

of equation (2.3.13). If so, then the integral (2.3.14) can be represented in the

form
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0
efAéerA“\NSeA” do-e M =5-e e M (5344

From this follows the equation (2.3.14). Now we show the validity of the

equality (2.3.14) that &, - solution of the equation (2.3.13).
Differentiating both sides of (2.3.14) by 7 we have:
—eMW,eh" = AeM e e N Se A,
Multiplying this equality on the left by the matrix e A, right to matrix

e A , obtain the equivalent equation:

W, =e A7A, M5, + o, AT,
Considering the property of the matrix exponential for constant matrix A, :
e™ A, = A,e™  we have from the last
- A5, —5,A, -W, =0,

By assumption &, is a solution of (2.3.13), and therefore is obtained the

identity.

The above theorem is valid for (2.3.10) (2.3.12).
Thus, the estimate of the integral reduces to the solution of algebraic

equations (2.3.12), (2.3.13) in the semi-infinite interval (O,oo). Following

Tikhonov's theorem, we arrive at the following conclusion:
If a) the matrices A(t) (i=L14) uniformly bounded and uniformly

continuous together with its derivatives at t e [to ,tl];
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b) A,(t)- stable matrix at t e[t,,t,], then exists a number s, such that
when 0< u < u, the solution of (2.3.14) exists and is unique in the segment

t, <t<t,.

The solution of problems (2.3.7a), (2.3.8), (2.3.9) can serve as the asymptotic
behavior of solutions of (2.3.6) and when assessing the value of the integral
(2.3.1) provide more accurate results than solutions problems (2.3.7).
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Chapter 3

Method of Moments in the Theory of Singularly
Perturbed Systems






After applying the method of moments to solve the problem of optimal
control of linear systems with lumped parameters by Krasovsky N. N. [86] this
method has been successfully compiled and turned out to be a very strong unit
study many tasks of control. In this chapter will set out how to use the theory of
moments to the problem of control of singularly perturbed systems with a
variety of optimizable functionals.

3.1 Statement of the Problem on How to Manage the
Problem of Moments

Let the behavior of the controlled system described by the equations

x=AOx+A Oz +B [Ou+fM), x(t)=x", (3.11)

uz=AOX+A Mz +B,Ou+ @), z(t)=2" .
where x(t)eR", z(t)eR™ - wvectors of state, u(t)eR" - control,
f,(t)eR", f,(t)eR™ - constantly operating outside forces; tel[t,,t], # -

"small" positive parameter (0< u <<1).

It is assumed that the system
X = A ()X + By (t)u + f,(t) (3.1.2)
where A, (t) = A1) - A1) ATOA®D), Byt =B, (1) - A1) A’DB,(W).
fo(1) = f,() - A, (1) - A (1) T, (1)

is completely controllable and

Re A(A, (1)) <O. (3.1.3)

It should be noted that some problems of control chosen value which
characterizes the costs of resources for the implementation of the process
control. Usually is required to achieve the desired result so that the value of this
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quantity was minimal and this value does not exceed certain limits. This value
is called the criterion of optimality or intensity [86] control and denote it by the
symbol J(u).

Let any normed space of functions by symbol M{} and will use it whenever

the norm of the space of functions is not fixed. The symbol R, we will denote
the perturbed problem, a R, - unperturbed problem of optimal control and at the
same time J/, J; — the minimum values of the criterion of optimality in

problems R, and R, respectively.

We formulate the following problem R, : Let was selected criterion of
optimality J,(u,), which can be interpreted as a norm p; (u,) functions
u,(t) =u(t, ) in space M*{uy}.

It requires among admissible controls [86] to find the optimal control uft ®,
which puts the system (3.1.1) from the initial state x(t,, ) = x°, z(t,, 1) = 2° to

the final state x(t,,z)=X",z(t,x)=2" and thus having the smallest possible

form p,(uU?).
This problem with the =0 responsible task of smaller dimension R, :

J(@ > min.
X = A, ()X + B, ()T + f, (t), X(t,) = x°,
7 =-A"(O[A; ()X +B, (0T + f, ()],

where fo(t) = f,(t) — A () - A (1) f,(t) .
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As shown in Chapter 1, the system (3.1.1) may be replaced system with
separate movements

%= At )%+ Bt u+ F(t, ), K(t) =%,

s 2 : (3.1.4)
pz= At 1) Z+B,(t, pu+ f,(t, 1), 2(t,) = 2°,

where

A=At ) =At)+AOHE L), A1)=Atw)=At)—xHE A D),
B,(t) = By(t, 1) = B,(t) + N(t, 1)B, (t, 1), B,(t) =B, (t, 1) =B, (t) — uH (t, 11)B,(t), (3.1.5)
fL0) = fi(t, ) = £,() = N(t, ) T, (t, ), T,(t)=T,(t, ) = F,@®) — uH (t, 1) T, (1),

R =2(u)=x"— uN(ty, 1)2°, 2°=2"(u)=2° —H(t,, )x°, x°,2° - given

vectors.

For small values of the parameter 4 , matrices H(t)=H(t, x),
N(t)=N(t,«) is having a dimension mxn, nxm are the solutions of

singularly perturbed equations (see 1.1)

uH + uHA () = A () + A,(OH, H(t,)=H°, (3.1.6)
uN = uA N =-A, () - NA(1), N(t)=N", (3.L.7)

and H(t, ) >-A OA®), N ) —>-ADAD), at x—0.
Let d(t,s, ) and W(t,s, ) are normalized at the point t=s (t,s€[t,,t,])

transition matrices of homogeneous systems X = A (t)%, uZ = A, (t)Z.

We write the law of motion of the system (3.1.4) by the Cauchy formula:

X(tu) = 0(tt, )X + [ DL, w)[By(s,)u(s, ) + (5. 0, (31.8)
b
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2(tu)=Y(t.t, )2 +£j‘1’(t,s,y)[l§2 (s, pu(s, u) + fz (s,)]ds. (3.1.9)

tO
In view of (3.1.5) for the functions (3.1.8), (3.1.9) can be easily checked by
limiting relations Ilrpi(tﬂ)ﬂ(t) "mz(t'ﬂ):_A;l(t)(Bz (t)U(t)+ f (t))
>

u—0 !

where X(t) - the vector of state "slow" subsystem (3.1.2). We introduce the

following notation:

My (6,5, 1) =Dt 5, 0By (5, 40), (S, 1) =W(t,5,10)B,(5, 1) . (3.1.10)
Definition. Matrices h (t,s,«) and h,(t,s,x) , each line item form r—
dimensional vectors h; (t,s, ), hy;(t,s, ) will be called the "slow and" fast
"pulse transition matrices of the system (3.1.4) on the impact of

u,(t)=u(t, w).

Comment. In the future, we will assume within the meaning of the impulse

response matrix [86] that h ®(t,s, 1) =0, h,(t,s,z)=0at t<s.

In view of (3.1.10) relations (3.1.8) and (3.1.9) can be written in the form

K(t, 1) = DL, t, ) X° +jc1>(t,s, 1) f.(s, p)ds +jh<1> (t,s, mu(s, )ds  (3.1.11)

Z(t,ﬂ)=\y(t,toy)z°+lj\11(t,s,y) fz(s,y)ds+ljh(2)(t,s,y)u(s,u)ds. (3.1.12)
H J754

Substituting the boundary conditions X(t,, ) =%",2(t,, ) =2" in (3.1.10),
(3.1.12), integral equations
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[husuts mds—ay (), i-1n (31193

[y (65, 20U, s = gy (1), 1 =1 (3.1.14)

4

where at, (1) =X = 8" (8,8, 1) % = [ (1,5, 1) (s 1),

fo

» ) » 1 Y o -
o, (W) =7 -y (.1, 1) Z; —;Iw“] (t,,8, 42) T,(s, 1) ds,

fo

X =X (1) =X =N (4, 1)7}, 2t =z} () =2t - HY (b, )%,

X', 2} - given numbers, Aty 20) T (1, 1) N (L, 20), HUT (8, 12)
- vectors - lines whose components are formed from elements of the rows of

the respective matrix @(t,,t, z2), Yt b, ), N(t,x), H(t,p).

In accordance with the wording of the problem R, vector function
hi (b L ), by, (q,t,ﬂ ) (izm;jzl,_m) can be considered as
elements of a space M {hﬂ (t) } and the vector function u(t) depicting the

control as elements of the space M"{u, (t)} adjoint to the M {h, (t)}.

Then the problem R, is reduced to the problem of moments [42]. Left side

of (3.1.13) and (3.1.14) are the linear operation g[hﬂ (t)] performed on the

elements h% (1) =h; (t,,t, ) (i=1n), h(t)=hy (t.t,z) (i=1m).
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We formulate the problem of moments for the task R, :

Is required to find the linear operation g['h, (t)] certain space M {h, (t)},

satisfying at predetermined elements hf,li) (1) (|=1_n) h® (t) (j:l, )

]

conditions

g[h}}ﬂ (t)]=a1i, i=1n; (3.1.15)

g[hfj) (t)}:/‘%w =1

and at the same norm p, [g], operations g[hﬂ (t)], was the lowest of the
possible.

Each linear operation that makes sense for functions h, (), from M {h, (t)}

is generated by a control u,(t), in integral form [42]. Therefore, interpreting

the expression on the left side of (3.1.13) and (3.1.14) as a linear function of the
operation generated u,(t)=u(t,) can be replaced by the problem of

determining u, (t) problem of moments, i.e. the task of determining the
operation g [hﬂ (t)] satisfying (3.1.15).

Then, in this case, according to the problem of moment [86], we need to find
from family vector of function of the form

h(t,,t, 2)=1h (t,t, )+ L, (4,4, 1) (3.1.16)

function h°(t,,t, ), at which the minimum

=minelhy (t)+1Lh ()]
bl (3.1.17)

—py[l W (0)+ 190 ()] = SIS (1)

72



The Optimal Control Algorithms in Systems with Different Rates of Motion

at ey + 1o, =1,

where
L =(hylipehn) 1 =(lulpronnly ), WS () =h (.t 1), WP (t)=h,(t,t, ),

p,[h, (t)]- norm of a function in the space M{hﬂ (t)}

Function h°(t,,t, ) we call the minimum function.

Minimum function hy (t,t) for the task R, is determined from the condition

Py = mlin[ll'ﬁo (U]= o[ Ry ()] = pIA° (1)] (3.1.18)

at I, =1,

where hy (t)=hy(t,t) =D, (t,,t)By(t), & =x'—D,(t,t)x° —tjcio (t,7) fy()dr,

h° (t) =1y (1).

3.2 Control with Minimal Power

Consider the following problem of optimal control: it is required to find a
control

u=u(t.u) (<R
transforming system

x=A0)x+ A1)z + B, (Ou+ f,(t)

. (3.2.1)
pz=A X+ A1z +B,(t)u+ f, (1)

from the initial state
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x(t,)=x", z(t,)=2° (3.2.2)
to the final state

xt)=x", z(t)=2' (3.2.3)
provided that the norm of

H“"L,J = max|utt. ) (3.2.4)

to<t<t,

has reached the minimum value. Here xeR", zeR™ ueR! x - small

parameter.

Suppose that for the problem (3.2.1) - (3.2.4) the following conditions:
1°. Matrices A(t) (i=14), B,(j=12) - uniformly bounded and
uniformly continuous together with its derivatives at t e[t,,t,]; matrix A,(t)

nondegenerate, i.e. exist A;*(t).

2° Vectors L(t), L,(t),..., L.(t) are linearly independent, at least at one
te(t,t), e iZ::viLi(t*):«tO at iZl:viZ #0 | where
L, (t) = By (1) = B,(t) - A, (D A, (1) B, (1),

d,,

o A =AM -AGA M)A, k=23..n

L®) =AML -
3°. At point t=t,
rank{B, (t,), A, (t,)B, (t,),..., A’ *(t,)B, (t,)}=m; (3.2.5)

4°. Roots A (t) of characteristic equation of the matrix A,(t) subject to

inequality
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ReA(M)<-y<0 (i=1m; teft,t]) (3.2.6)
In case, when A(t) (i=14), B;(J =1,2) - constant matrices, instead of the
condition 1°, 2° we make the following demands:

5°. rank{B,, A,B,,..., A" 'B,}=n; (3.2.7)
6°. rank{B,,A,B,,...,A"'B,}=m. (3.2.8)

When the condition 1°, 4° in the system (3.2.1) can make a complete
separation of movements. After simple transformations (See Chapter 1), we

obtain:

X

At )%+ By(t wu+ it ), (3.2.9)
pi = A 1)Z+ B, (t p)u+ T (t, 1),

t,)=x° 2(t,)=2° (3.2.10)
(t)=x, 2(t)=7" (3.2.11)

where A(t, ) = A1) -AOHEG L), At w)=A0)-LHE DA®),

B,(t, 1) =B,(t) + N(t, 1B, (t,), B, (t, 1) =B, — uH(t, 10)B,(),

fit )= f@O N0, ftw)=F,0—uHE L)),
X=X+ uH(t, 1)z, Z=z-H(t, )X,
X' =x"+uH(,, 1)Z", Z'=7"-H(, X", v=01..;

Matrices N(t, ) and H(t, &) are solutions of the equations

uN— AN =—A, —NA,, (3.2.12)

uH + uHA = A + AH. (3.2.13)
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Matrices elements N, H regular dependent parameters. As shown in Chapter
1, the matrices N and H of (3.2.12), (3.2.13) are uniquely determined, whereby
instead of the problem (3.2.1) - (3.2.4) to consider the problem (3.2.9) - (3.2.11),
(3.2.4). This problem reduces to the problem of moments: to find

22 = min[Bi(e. ' 0. p+ Bilo, ¥t 0, ldo,  (32.14)

Pa g
on condition
C/p+4C,q=1, (3.2.15)
where ®O(t,s,z) and W(t,s,z) (t, <t<t) - normalized at the point

se[t,,t] the fundamental matrices of  homogeneous  systems

X=Ax, wZ=AZ respectively;

C, =X -®(t,t,, )X, C,=7"—¥(t,t,1)2° (3.2.15a)

For the matrix W(t,s, ) the condition [42]

(s sce (9]

forall t,seft,,t,], t=s, when C,y, >0—const.

If we assume that in some way solved the problem (3.2.14), (3.2.15) and thus

found vectors p=p°, q=q°, then it will be known the minimum function
ho (t, 1) = BJ(t, ;) @' (t,,, 1) p° + By (t, 1) W' (8,1, £2)Q° (3.2.16)
and the number of pj > 0.

According to the rule the problem of the moment [86], we have to define the

desired optimal control u = u; (t, ) based on the maximum condition
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t "
J i o ¢, )t = a3 ¢ st pdt =1 (3.2.17)
fo U
1 1
at maX|U(t,#)|=—0 or else when |u(t,/¢)|=_0
to<t<t, P oy |

Maximum integral in (3.2.17) will be achieved if each time t integrand
h°(t, ) u(t, ) will be maximum. Thus, optimal control uj(t,.) must be

determined from the condition [42]

by (¢, 22)uj (& 22) = miaxhy (& a)u e, 1) (3.2.18)
at |u(t,ﬂ)|si0=wg (t, <t<t). (3.2.19)
Pp

Since the system (1) non-singular, and hence the function hg(t,,u) - a

smooth [86], i.e. it is at a given time interval is zero only in a finite number of

isolated values t =t;. Then the solution of problem (3.2.18), (3.2.19) delivered
by the expression
Uy (t, 12) = @psign(B](t, L)' (4, 1, 12) p° + B; (t, 1) ¥'(8,,1, £0)0° (3.2.20)

(t, <t<t)
Function uz(t,,u) is defined everywhere except for a finite number of

isolated values t =t;, where the function standing under the sign of <sing>

vanishes.

At =0 from (3.2.9) - (3.2.11) we obtain

X=AMX+B,MOT+ 1), X=(t)=x", v=01.; (3.2.21)
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7=-A) (A 1)K + B, ()T + T, (t)) (3.2.22)
where A =A -AA'A, B, =B -AA'B, f,)=f-AA'f,.

The resulting system is called a generating system [26]. It should be noted
that the solution of (3.2.21), (3.2.22), (3.2.4) can not serve as a zero
approximation of the problem (3.2.9) - (3.2.11), (3.2.4) as the in the vicinity of

the boundary interval [t;,t,] there may be finite number of isolated points (to

M pieces), which must go through the process of switching control action.
Also in this case, the issue of system switching from one state to another for
rapid subsystem (3.2.9) remains open. So first of all we need to specify a system
for which the optimal solution of the problem is well-defined zero
approximation of the problem (3.2.9) - (3.2.11), (3.2.4).

Due to requirements regarding A (t) (i=14) system (3.2.1) (see the

condition 1°) solutions of equations (3.2.12) - (3.2.13) are limited and at zz —0

will be performed:

At ) > AW, Altm)—>A®), Bt ) —>B(t), Byt —B,(),
fit, ) > £, F,(t) > f,(0).
Consider the system
X = A, ()X +B,)T + f,(t), X=(t)=x" (3.2.23)
X, =A)Z +B, )T+ f,(t), Z=()=2" (3.2.24)
where z, =Z + A (L) AL)X, 2. =2"+ A L)AR)X, v=01...

The system (3.2.23), (3.2.24) approximates the system (3.2.9) - (3.2.11) with

accuracy of the order of smallness O(x) and it is obtained from (3.2.9) -

(3.2.11) in the following approximations:
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H(t 1) = Ho () =—AOAD, N2 =N 1) =-AOAD), Al +z)=A),

B,(t, +71) = B,(t,), —oo<7r<0.
For the new system the minimum function takes the form
3 AW 3225
ho(t 1) =h (6, .0 1) = By )P (L, P + By(tye  “ g, (3229

where @'(t,s) - the fundamental matrix of the homogeneous system

X =AX; p° g° -solutions extremal problem: find

4
5 =min]htp.q, x)|dt (3.2.26)
PO ¢

on condition
C.)p+Cig=1 (3.2.27)

_ _ _ t —
C =x-0(t,t)x°, C,=z-e*¥" =210z, 7,=" Ly (3.2.27a)
U

Optimal control (3.2.20) for this case is written as

U2t 1) = wfsign( Byt s) ', O P° + By (t)e 7g°),

_t, 1 (3.2.28)

t
r=—2 1, <t<t, o) =—.

0
Control (3.2.28) transfers the system (3.2.23), (3.2.24) from the initial states
(x°,z°) to the final state (x',z') and it is the function of the relay. Minimum
function h(t,zz) (3.2.25) may be zero in the vicinity of t,,t , because it

contains a function of boundary layer type, whereby the control (3.2.28) has a
complete set of switching points, which is not always possible for the
generating system (3.2.21), (3.2.22). Rewrite the equality (3.2.27) in the form of
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Zc‘” D, +,uZC(2)qk 1. (3.2.29)

i=1
We now show one of the approximate methods of determining the optimal

parameters p°,q° (i=Ln; k=1m).

Assuming that the vector C, (3.2.27) satisfies C® =0, from (3.2.29), we

obtain

_ 1 n-1 _ m _
Pn :F(l_zci(l) P; _ﬂzcz(Z)Qk)- (3.2.30)
n i=1 k=1

The following functions h, (t, z2) =h,(t, p,q, &) standing under the sign of the

module in (3.2.26) can be represented as

By()®'(t, ) p=K(t.t,)p Z (tt)p, (3.2.31)

By()®'(t, ) p=K(t.t,)p Z (tL)p, (3.2.32)

-4

where 77(—) function of the type of the boundary layer, in other words, for
M

it has the estimate ||| <C exp(y(ﬂn, C,y >0—const .
7,

In view of (3.2.30) - (3.2.32) function h,(t, «) is written in the form

hy (t, 12) =, (t, . T, 41)
3.2.33
=Kl [K 1) -l “)é;jm[n'(t'tl)—uK"(tl’t)ég]q, 5239
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r_ ~' _(C® _(1) ~ @)
where 77" = (17,175, 7), - G =(C7,C57,...,C),

C;=(CP.C....CP) T=(T..T,-- )

In this case, the problem (3.2.26), (3.2.27) the relative minimum is reduced to
the problem of the absolute minimum of the function

Po(P. G, 1) =j|ho(t, p.d, 1)t (3.2.34)
b

Note that for the functions hy(t,p,q, ), 0,(P,q,x) at u—0 holds the

following limit relations:

limh, (¢, 5,0,4) =R (4, B), limpy(t, .0, 4) = po(P),  (3:2.35)

where R, p) = EﬁﬁL{wmm—Kﬁﬁ)jn %w)ﬂh“mw

Numbers P, =p° (i=Ln-1), G =g° (k=1m) determining the

—0 —O

minimum function h{(t, p°,G°, ) will satisfy the system of equations

% J(K (t4) ((1)t1) C{}signho(t, p,q,.)dt=0, i=Ln-1,

0p, | t—t | uK, (b))~ | & =
Yo _ =212 C? (signhy (t, P, T, 4)dt =0, k=1,m.
. J(ﬂ( P o ignhy (t, P, 1)

(3.2.36)

As stated in [86] for the solution of this problem on the conditional minimum

is considered the differential equations for the unknown parameters

I, (k=1M —1) (in this case, relatively p,,q, )

%z_gw, i=1LM -1 (3.2.37)
dv ol,
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where &> 0- coefficient of proportionality determining the "shutter" speed. In
drawing up the differential equation (3.2.37) introduced a new parameter V,

which is interpreted as the time counted at the point of the movement | ={l.}

along "the descent of the curve" by some arbitrary point 1 ={l} on the
M

hyperplane ZCiIi =1 to the desired point 1° ={I°}, numerical integration by
1=1

using the recurrence relation

N _g[w]w AV. (3.2.38)

From the second equation (3.2.36), we note that arbitrary aan (k=1,_m)
k

defined functions faster components h,(t, p,q, ) .

Then, in this case, will consider the following singularly perturbed

differential equations respectively to p,, G, (i=1,n—L' k=1,_m)

i __op A4 9 (3.2.39)
dv op; dv oa,
where the partial derivatives % a—’[_JO are defined by (3.2.36). For the
Pi Ok

numerical integration of the equation (3.2.39) can propose the following process

of successive approximations. At x=0 from (3.2.39) we obtain the reduced

system

b __, o[ p), (i =1n —1). (3.2.40)
dv p;
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Equation (3.2.40) can be integrated numerically using the relation (3.2.38),

identifying all p, = p’ (i =1,n—1) and leaving them in the equation

da, . 0P, ( po,q) —

(S - , k=1m (3.2.41)
dv oa,
and making the substitution 7 = =t the right side of (3.2.41), we obtain:
U
da, e bOc? | -
d—\;:—gj‘{nk(a,,u)—,uc—(l)k signhy (o, 1)do, (3.2.42)

where

I:;(O'v )= ho(@l +1, 5017%‘): ho(t1v 5O’q)+ ho (t,. B, q)ops +...

n bOc?]  (3.2.43)
C 1) bnl) +Z|:77k (O-’lu)_lu C(l)k ko
k

Now, again using the relations (3.2.44) can be integrated into the
equation (3.2.42).

After the necessary calculations will be known q,f’(k:l,_m). Number p,°

calculated using the formula (3.2.34). Number E)Oozio characterizes the

Lo
amplitude of the control action.
Suppose now that for sufficiently small x(0<u<z,) and the boundary

points (xo, z°), (xl, zl) following conditions are met:

a) the angles of intersection of the graph of (3.2.25)
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hy” (t,2¢) =y (t, p°,G°, 1) = By (1) D5 (1.1,) P° + By (t,)e HW-wnge (3.2.44)

to t axis nonzero;

o| %P0 Po
b) Jacobian \ 6p ' &g ) at p=p°,§=q° nonzero.

a(p,a)
When the above conditions function hy(t,z)=h,(t,p,d, ) vanishes only
for a finite number of isolated points in time t:tj(ﬁ,q,ﬂ)(jzl,_s), are

defined as a  function of  the magnitude unambiguous

D a i=1n 1m ; ot a; o
Biv Qs (l =1n; k=1, m) and the partial derivatives —, — at
o oG

B=p" G =9° (i:ﬁk:l,_m), exist as it follows from the implicit
function theorem.
Even under this condition from the same implicit function theorem implies

that ﬁi"(i :L_n) are continuously differentiable functions on Ci(l)(i :L_n), and
q.’ (k :1_m) are continuously differentiable functions on

c® (i=1n), ¢® (k=1m). Then for small changes AC", AC,® will

be small changes in variables p,°, @,°, where are the estimates:

|Ap°| <1 Ac| (3.2.45)
1ag.%] <, (||| + Ac, ) (3.2.46)
Aa| <1 (Jac]| +[Ac,|) (3.2.47)

where r, - positive numbers.
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Changing the minimum function h? (t, 2) depends not only on changes in the

values p°, G, and members of unregistered matrix decomposition d(t,t,z)
and w(t,t,2) . Imagine matrices ®(t,s, u), w(t,s, ) in the shape of:

D(t,s, 12) = D(t,S) + ud(t,s, 1) (3.2.48)

w(t,s, ) =eMOE L 5t s 1) . (3.2.49)

It is easy to show that for sufficiently small values u < 4° functions ¢ and

& satisfy the inequalities

#(t,s, p)|<d,C*(e"™ —1)e ™ (3.2.50)
I |<d,

_y(t=s)

Hg(t,s, p<CEse -1e (3.2.51)

. 1
where m>1,d.,d,,C—const, 0< < £°, #° =min ——.
1, Uy H= U H {dzc d1C}

Then, for any vectors p and q hyperplane of (3.2.27), in particular in

p=p",q=0° function h,(t,p,q,) (t, <t<t) can be represented as

hy (6, P°,0°, ) =y (t, P*q°, 1) + O(u +€7), (3.2.52)

t-4

where 7 =—2 <0,y >0-const.
y7i

This means that the function hﬁ,(t,ﬁo,qo,y) has as many zeros as had

h, (t, p°,G°, 1). These zeros are placed with precision O(u+€’") (the distance

from the boundary point t=t, with precision O(x)), near the respective zeros
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h, (t, 8°,G°% 1). In view of (3.2.48) and (3.2.49) from (3.2.15a), (3.2.27a), we

obtain
AC, = u(N(t,, )7 — p(t, ty, 1)X°
— D (b, )N (t, ) 2° — gty tg, )N (b, 2) 2°,

= A7 | o _ ) - 2°
AC, = u(e Ml 0~ Hod) - Etod? )
z_,UHl(t'lhu)X )

where H,(t, «) - limited function, which appears from the relation:

(3.2.53)

to_hso.

H(t, 1) =—A O A () + uH, (t, 1), 7 =

Considering that the matrices N,H limited and functions ¢@,& satisfy

(3.2.50), (3.2.51), from (3.2.45) - (3.2.47), we obtain:

|Aﬁi° |<mu, ‘Aqk0|§mz,u, ‘Aw§|£m3,u, m,,m,,m,,» >0—const. (3.2.55)

These estimates suggest that for all t, except for a set Q values t, a measure

which satisfy the inequality

c(@Q)<m,u. (3.2.56)
Control ug(t,z) differs from the optimal control uj(t,x) the original

problem with the accuracy O(u) , i.e. will be performed the following

inequality:
‘ug —u§| = ‘Au§| <m.u, m,,m,—const. (3.2.57)

Hence we have the following conclusion:

86



The Optimal Control Algorithms in Systems with Different Rates of Motion

Theorem 3.2.1. If the conditions a), b), then for sufficiently small values

< =min i L
H< Hy| Hy d,C'd,C

1) optimal control u,(t,) (3.2.20) can be approximated by a control

ud(t, z2) (3.2.28) with precision O(x) ;

2) at #—0 both control - uﬂyug one tends to the same limit, i.e.
limu, (t, z2) = limug (t, 22) =u" (t).
1—0 1—0

This item is the optimal solution for the problem of the generating system
(3.2.21), the order of which is lower than (3.2.1). All these statements are true

for all t, except for a set Q values, a measure which is of the order of

smallness O(u) .

In conclusion, it should be noted that the above method is easily offended by
vector control case.
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Chapter 4

Research Tasks of Optimal Control of Dynamic

Processes Economy






4.1 Decomposition of an Extreme Problem of Interbranch
Balance

The dynamic model of interbranch balance describes by a system of
singularly perturbed differential equations

x=(E,—AMt)x—At)z-w?,
pz==A0x+(E, A1)z -w?,

where E,,E, , — identity matrix sizes of kxk, (n—k)x(n—Kk) respectively;

(4.1.1)

w® w® — vectors with dimensions of the final product k and n-k

respectively.

The formulation of an extreme problem for the system (4.1.1) is similar [44],
leads to some complex restrictions that in solving the problem must take into
account that creates certain difficulties and, ultimately, the inability to obtain
effectively implemented algorithm. Therefore, it is necessary to replace the
system (4.1.1) is equivalent to the system, which are separated by slow and fast
position.

Consider the system

x=(E. - AD)x-u?,
L= (E.— A ©)7-u?. (4.1.2)
where
. At ”_ AVt @ _ W@
A=A-AEL AN A T=2+(En-A) T AX B w®

-1
u(l) :W(l) _Az(En—k _AA) W(Z).

As shown in Section 1.2, such a system may change the original system,

since it has all the properties of the original and is an oversimplification. Given
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the initial conditions and parameters known to control the decision of extreme

problems for the system (4.1.2) can serve as an approximate solution of the
extremal problem for the system (4.1.1) with precision O(y) .
We take as the control parameters the flow of final consumption w;. The

vector flow of consumption must obey certain natural limitations. The simplest

kind of restrictions can be expressed by the following requirements:

1. In each branch the flow of consumption w; can not be less than the
specified minimum permissible value y; >0, i.e. w;>y;, j=12,.n. Then
naturally function u” (t),u'®(t) obtain following restrictions:

1
u 2y - A (B, - A) Ty,

U > @),

(4.1.4)

where U, ™ —k - dimensional, u®,y® —(n—k) - dimensional vector

functions.

The minimum allowable flow of consumption v, (t) can be determined by

the rate consumption of production and of the population.

] _ (E, 0 X
2. Vector flow accumulation looks: S = _|=0.
0 HE, )\ 1Z

In this case, the system (4.1.2), we have:

v - A (E,\ - AA)-l y® <y® <(E.—A)X, (4.1.5)

py? <u?<(E,, -A)Z (4.1.6)
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Thus, we must assume that the control functions subsystems (4.1.2)
associated restrictions (4.1.5) and (4.1.6).

The optimality criterion, we can select a functional:
t1
1= [(q(l),w(l))+(q(2),w(2))}dt. (4.1.7)
t0

where (q®,w®)= Zq, o (0@ w®) = quwj, ¢G>0 i=12..n - a

j=k+1
nonnegative decreasing function. The functional (4.1.7) represents the total

amount of increase of social welfare for the period [t,,t,] [50]. Of course, we
must strive to build such functions W, (t) j=12,...,n, that deliver the greatest

value of this functionality.

Now, taking into account the relations (4.1.3) functional (4.1.7) may be
represented as:

] =j(q(l),u(”)dt+j(q‘2),u(2))dt 0,50 418)

where (q(l),u(1

=
N—
I

. -1
r; — elements of the matrix R=A, -(E,, —A,) .

It should be noted that the slow and fast sub system (4.1.2) are not connected,

and it is possible to consider each separately. Furthermore, as the functional J

represents the sum. The same function u® =ul" delivers the extreme values of

the functionals J and J® with the following restrictions:

a) the rate of production growth x =(E, — A, (t))x—u®,
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b) on the initial and final output of production x(t, )=x’, x(t,)=x"

This is due to the fact that the functional J®® in Formula (4.1.8) does not
depend on the choice of u®,

Similarly, the same function u® =u(? delivers the extreme values of the
functionals J and J® with restrictions:

a) the rate of production growth 7 =(En_k - AA)Z —u® ;

b) on the initial and final output Z(t,)=2°,  Z(t)=Z7"

Thus, the original optimization problem is divided into two problems that
have smaller dimension systems and fewer restrictions, which are considered in
the optimization process that shows the effectiveness of the proposed algorithm
with the position of its use in practice.

4.2 Solution of Singularly Perturbed Problem on Optimal
Economic Growth

To get one of the possible solutions to this problem

t 2 t
%b [erote (c(t) —%} dt = [u* @dt=ul; . ., (4.2.1)
ty )
pux=—-Ax+F(x)-u, (4.2.2)
b
x(to)z\/;k0 =X, (4.2.3)
b -5(t~t)
x(t,)= e k=X, (4.2.4)
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where the function f (k) has property f(ak)=af(k) in [85] assume that

consumption of worker’s and productive reserves is not changed in time. Let us

take this assumption for this problem.

In addition, we believe that the rate of discount & constant and positive, and
its value is considered to be quite large, which indicates a greater preference for
the useful life of loved ones [82, 85].

If put X=0, then from (4.2.2) we get:
F(x)-A4x-u=0 (4.2.5)
or
f(k)-A4k—-c=0. (4.2.6)

If the value K during the time of transition retains its constant value, the

control parameter C does not change respectively to Kk .
.. dc
By then, the condition &:0 follows that
f'(k)=4. (4.2.7)

Under the made assumptions respectively to the production function f (k)

from (4.2.6), (4.2.7) can only determine the value

*

k=k", c=c"=f(k")-Ak", which satisfy the following inequality:

0<c < f (k7). (4.2.8)

Balance at k(t) =k, C(t) =C meets all the necessary conditions, except for

the boundary conditions
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k(ty) = ko, (4.2.9)

k(t,)=k,. (4.2.10)

These values are determined balanced growth mode [85, 93]. With x#—0

values k*,c" have limits, ie. limk =k", limc"=c”, where k', T —
u—0 u—0

solutions of the equations of the form f'(k)=¢, f(k)—ek—c=0. On the

other hand, the condition X(t) =0 we have:

k-ok=0. (4.2.11)
To associate a non-zero solution of (4.2.11) with the point of rest k = k"
we fix one value t, € [to,tl]. As described above, for any t, e[to,tl] is the
equality:
k(t,)=k". (4.2.12)
The solution of the task (4.2.11), (4.2.12) has the form:
k(t, k") =e’k* (4.2.13)

This decision at t —t* tends to the point of rest K” . In view of (4.2.13)

from the relation x(t)= \/geé(”")k(t),

b 5 a a
F(x) = f| |=e?®T0)k(t) |- —2—e0t0) = f(x)— —Z_g ) 4.2.14
R (4219

we define x=x*, u=u":
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. F(x')-u’
These values satisfy the equation (4.2.5). This point X = L is a rest
&

point “connected systems” [20] (in this case one equation)
§=—gl>~<+ F(xX)-u", 720, (4.2.16)
dr

%(0)=x,, (or when 7 <0)
%(0)=x,. (4.2.17)

The point of rest X~ is asymptotically stable in the Lyapunov 7 — 0. Now

the equation (4.2.2) can be rewritten as:

ot t-s t-s

W2 1§ -a— 15 -4
X(t,u)=e *“x,+=|e “F(x(s))ds——|e “u(s)ds, (4.2.18)
R BT Eae
where 4, =4 (u)=e+pu(n+5).
If put in (4.2.2) F(x(t))~F(x"), then in the known u=u(t) phase

coordinates x(t)=x(t,x) taking into account the boundary conditions is

approximately determined by the formula:

e o ng’”{l_eﬁ[ﬂ]_

13,45
/u{[e u(s)ds.  (4.2.19)

We agree that the boundary points x(t,)= \/gkﬁxo, x(t) = geﬂf(trtc)klle

belong to the domain of influence point of the rest X". This means that the

solution of equation (4.2.16) with the initial condition X(0)=x, exists for

7 >0 and tends to the point of rest X" at z — o0, and another solution (4.2.16)
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with the initial X(0)=x, also exists for <0 and tends to the point of rest X"
at 7 ——oo.
Note. With <0 from (4.2.17) we obtain the equation with reverse time

%:gi—F(x*)+u, 7<0.

In this case, we are interested in is the solution of the problem (4.2.1) (4.2.2)
- (4.2.4) which, when g — 0 passes to the solution of the problem generator.

By (4.2.5), (4.2.15), (4.2.19) of the difference x(t,z)—x" define the following

formula:
x(t, 1)~ e%(%](x0 -X)+X —ij'e%(t_"s]u (s)ds. (4.2.20)

f

We define control as follows:

u°(t):u°(t,y):v(t_t°j, o<tZh Wb (4221)
7]

At t =1, u3 (4.2.7) we obtain the following relationship of moment:

o, = [e5N (2)d A, (4.2.22)
0

where o, =—x +e 4%, + X (l— e’ ) 'y T, = b /:to .

Then the function u’(t)=V(z) satisfying the relationship of moment

(4.2.22), with a minimum rate is:

2]10! e*ﬂi(frf)
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It should be noted that when 7, —7 — o0 (2 —0) from (4.2.23) we get the

following limit relation:

lim Vv (z)=0. (4.2.24)
Tl(ur—>0)

At the same time, this control u° (t,,u) (4.2.21) is optimal in the sense of the

task and the corresponding phase coordinates can be written as:

F(x')-u" F(x)-u") ae”(1-e%
x°(t,y):%+e“” X, — (/3 —— 1_e<24m ) 0<zr<y,
or

gl (1 g2 A .
Xo(t’”):e_w"o+’~‘*(1‘e_m)‘$("‘i+e_mlxo+X (L) (4.2.25)

0<7<y,
Function x(t,y) (4.2.25) satisfies all the boundary conditions (4.2.3) (4.2.4)

at >0 (r—>w)

F(x*)—u*

&

=% (4.2.26)

x° (t,y)—)

This means that the point of rest X~ asymptotically stable in the Lyapunov

7 —00. The limit relation (4.2.26) can be written in the form:

: e F(K)-c
Iim\/ge“’(“")kg (t,ﬂ):\ge ) L (4.2.27)

u—0 &

where
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0 P (] f(k*)_c*
k., (t,u)= _

4t g | gl f(k)-c _ale‘}*‘“‘”(l—e'%f) (4.2.28)
0 2 (1—67““”) .

Function ko(t,y) satisfies all the boundary conditions (4.2.9), (4.2.10), and
for its satisfies the following limit relation:
f(k)-c
. :

. o _
Ll_r;% k;t (t,,u) -

tot”

In this case, "highway" generates no equilibrium line, and generates a
function of the form:

ke (t o)=e‘5(‘*“)-M t e[ty t] (4.2.29)
o b - ) A 2.

The optimal trajectory, leaving the start point is sent to the "highway" and for

quite some time are close to the line (for sufficiently small «) and goes with it

to achieve the desired end state (see. Fig. 4.2.2).

We construct the optimal trajectories x(t,x) (4.2.25), k; (t, 1) (4.2.28) n

corresponding line (Fig. 4.2.1, 4.2.2) with the following data [85]: the time
t €[0;21]; the growth rate of the labor force n=0,0053; depreciation rate
g:%zo,omg; discount coefficient 6 =0,10; a small positive parameter

=05 1=£+n=0,0822, 4 =&+ u(n+s)=0,1295.

The calculations used the following data:
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factor of production costs a=0,6, a,=2,189, incremental coefficient fond

intensity b=&=5,4725, the elasticity of manufacture production assets
a

a =0,249, the elasticity of labor issue B =0,751. The initial and final state of
the capital-set values for t=0 and t=21
k(0)=k,=1,8682, k(21)=k,=3,7772 , time to highway t =3 |,

corresponding capital armament k™ =2,0431.

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
L— Magistral for x ~— X(tau) for mu=0.5 —x(tau) for mu=0.05 — x(tau) for mu=0.005 ]

Fig. 4.2.1 The optimum trajectory for capital intensity of worker x(t,,u).
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'
'
)
'
]
)
J

0 1 2 3 4 65 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

[—Maglstral for k(tau)== k(tau) for mu=0.5 - k(tau) for mu=0.05 =~k(tau) for mu=0.005 I

Fig. 4.2.2 The optimum trajectory for capital intensity of worker k(t, y) .

4.3 Control in Single-Commodity Macroeconomic
Dynamic Model for Different Optimality Criteria

In here solve two problems of optimal distribution of gross product which
illustrates the results obtained in [51, 52].

Problem 1. To solve the problem (dynamic one-commodity model of
Leontiev)

b—=(1-a)x-w, x>0, (4.3.1)

where x— the amount of gross output produced per unit of time; a-—
coefficient of production material costs; b— coefficient of incremental capital
intensity ratio of the time, @— consumption. We use the materials [52] i.e.
solution of the problem reduces to the solution of the nonlinear Riccati equation

(or rather to the solution of Bernoulli's equation) with a final condition.
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If we use the terminology introduced in [51, 52] for the formulation of the
problem of control, then the relation (4.3.1)

g=1"2y_1,. (4.3.3)
b b
0<w<(l-a)x (4.3.4)

is the equation of state, w—is control, X —is state of the system. Now we need
to define a control @, at restrictions (4.3.2) (4.3.3) (4.3.4). The solution to this
problem has to satisfy the condition (4.3.4). Existence of such a decision in this
case depends primarily on the choice of discount rate 6 and the parameter b.

Let’s show it. Let us consider the function of Hamilton:

H=g" p(l_—ax—la))+zw2 . (4.3.5)
b b 2
Write a necessary condition for an extremum [93]:
H_ea (—E + aa)j -0. (4.3.6)
ow b
Hence we have:
w=" (4.3.7)
ab

The canonical equation for the adjoint variable is written as follows:

d, s oH
— (e p(t))=—=—. 4.3.8
L (E7P0)=-= (4.3.8)
It follows that
p= —[—ia —5) p. (4.3.9)
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In view of (4.3.7) rewrite (4.3.3):

1

— p. 4.3.10
g P ( )

., l1-a
X=——X~—
b
We will seek p(t) as:

p(t) = K O)X(0) . (4.3.11)

Then the expression (4.3.7) is written in the form:

o= Kx, (4.3.72)
ab

at the time the equation (4.3.10) takes the following form:

l-a 1
X=| ——-——K |X. 4.3.12
( b b« j ( )

From the condition of transversality [93, 95] boundary condition p(t) is

given by:

p(T)=Bx(T). (4.3.13)

p(T)=K(T)x(T). (4.3.14)

Comparing the ratio (4.3.8), (4.3.14), we find that
K(T)=2. (4.3.15)
From the equations (4.3.9) and (4.3.12) it is possible to find the differential
equation which must be satisfied by the function K(t). Substituting the

equation (4.3.9) the expression (4.3.11) and (4.3.12), we obtain:
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Ko-20za)zob o 1 e (4.3.16)
b b x
Equation (4.3.16) is a Bernoulli’s equation. This equation with the boundary

condition (4.3.15) determines uniquely the function K (t). Believing K(t)=0

!

and considering the ratio &:V : —%K =(%) =V from (4.3.16) we get:
. 21-a)-6b., 1 1
V=" = Ty~ VT)==. 4.3.17
s g V(M ; ( )

It is a linear equation and solve it, we obtain the solution of Bernoulli's
equation:

Sba(2(1-a) —bs)

[

K(t)=
b )(ba(2(1—a)—b5)—,8)+ﬂ '

(4.3.18)

(2(1-2)-b5) (
€

It should be noted that the solution of the linear equation (4.3.17) is stable, if
the following condition:

20-3) 5 0att<T
or
5<@. (4.3.19)
In view of (4.3.18), (4.3.11) from (4.3.7) we have:
o0 B(20-2) ~bo)x() s

N (ba(21-a)-bs)- p)+ 5

Graphic of function @ (t) shown in fig. 4.3.2. We obtain the desired solution,

and it have to satisfy the limit (1.1.24). It is easy to notice that in this case the
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parameter b can not be considered to be small, as it tends to zero condition
(4.3.4) is not satisfied. From comparison of (4.3.20) and (4.3.4) we have the
inequality:

B(2@1—-a)—hs)

T

b )(ba(Z(l— a)—bd)-p)+p

<l-a

(2(1—a)—b§)[ (4.3.21)

e

If the parameter b you can not tend to zero then we will need to T — oo,
Then (4.3.21), and T — o0 we get:

liﬁsa. (4.3.22)

Combining (4.3.19) and (4.3.22) we have an interval change values of

parameter o :

l1-a - 2(1-a)

<o 4.3.23
5 5 ( )
or
135—b<2. (4.3.24)
1-a
at t=T we have another condition:
P ia. (4.3.25)

We show that in the interval 0<t<T function K(t) or left side of (4.3.21)

is positive definite. The numerator of the fraction is positive. It follows from
(4.3.23). It remains to verify the denominator. Let us assume that the

denominator - is positive, i.e.
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e(z(l—a)—bé)(_T) (ba(Z(l— a) —bs) - ﬂ) +£>0, (4.3.26)

ﬂ(l— e(z(la)ba‘){tb]J N e(ﬂl—a%b&)(%) (ba(Z(l— a) B b5)) 5 0.

The second term is positive. For the first term was non-negative, it should be

- e(2(l—a)—b6)[%) S0

or

e(z(lfa)—bé‘)(%] <1 (4.3.27)

This inequality holds for all t<T .

The phase variable x(t), taking into account (4.3.20), is given by:

On the fig. 4.3.1 is a charting function.
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0.85 -
0.8
o 1.:
2 0754 -+
S :
£ 07+¢-
T :
§ o0.s---
B
Z 06-
0,55 !
e e e e e e e
0123456 7 8 91011121314151617 1819 20

Year

Fig. 4.3.1 Schedule of function x(t) (formula 4.3.28).

So, we have indicated the conditions (4.3.27), under which there is a solution
to this problem in the form (4.3.28). On the fig. 4.3.3 is shown the optimal
regulator of system.

"Amplification coefficient” K (t) obtained by modeling equation (4.3.17).

021"
02
019
048"
0az|-:
R e S S B8 SR Sk Bt S CL L SRR S o
RS R e
0D e L T I
012

Consumption per worker

9 10111213141516171819
Year

Fig. 4.3.2 Schedule of function @(t) (formula 4.3.20).
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Problem 2. Now consider another task. In this case the quality of the process
is estimated linear functional:

.
J = [ w(t)dt — max (4.3.29)
0
or
]
J =—[ew(t)dt > min . (4.3.29)
0
1 x(z)
> _L —— ¥ 1-a
ab: S—_
b
1
-1 L
1 (¢) 20
D=5 l I
1 . V(@)
b —( : ) v I
2(1—a)_5

(2(_1~a)_ S L2
5 )

Fig. 4.3.3 Optimum regulator of system x(t) :1_Tax(t)—%a)(t) .

We also assume the intensity of consumption w(t) can not exceed a certain

maximum level w", so that

(4.3.30)
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For solve this problem we use the method set out in [41]. Considering the
consequent economic sense variables (they are not negative), we can not take
the type of restriction

max

to<t<T

u(t)<v. (4.3.31)

Therefore, we need to introduce a new function to get artificially limiting the
type (4.3.31) from (4.3.30). So, enter the following function:

uzw_%ﬂ (4.3.32)

Then in view of (4.3.32) from (4.3.30), we obtain:
w w’
——<us— (4.3.33)
2 2

or

*

w
Wﬁﬂﬁif- (4.3.34)

Now we need to change the dynamic, respectively, one-commodity model
Leontiev, which represents the balance ratio [86]

b%:(l—a)x—a), x>0, (4.3.35)

x(0)=X,, (4.3.36)
where x— the amount of gross output produced per unit of time; a-—

coefficient of production material costs; b— coefficient of incremental capital

intensity ratio of the time, @ — consumption:

*

dx w
b—=(1-a)x—-u-—, x>0, 4.3.37
dt ( ) 2 ( )
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x(0)=%,. (4.3.38)

Horizon process time distribution of gross product is considered as final.
Then it is necessary to set the final time the minimum acceptable value of the
intensity of the gross output in order to allow consumption and outside this time
horizon:

X(T)=x. (4.3.39)
Then we need to solve the following problem: find a control u(t), minimizes
the function (4.3.29) with restrictions (4.3.34) - (4.3.39).

This problem reduces to the problem of moments. Solution of the equation
(4.3.37) with the initial condition (4.3.38) can be written in the form:

1 at 17 t s W ~ (%)t
x(t)= j ds+—2 (1_a)[1 e J (4.3.40)

0

Hence, when at t=T we will have:

a=[e " u(t)t, (4.3.41)

where o = b{—x pel¥Ty W (1_8(?)T)J_

Therefore, we need to find a control u(t), which minimizes the functional

(4.3.29) with restrictions (4.3.34), (4.3.41).
i 0 : . U .
According to [51] (u°(t)=vsign{B; (t)®'(T,t)l” +B;(T)e “/I¥ e }),

the control is written in the form:
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uft )=—Slgn(ﬂie - —e““) , (4.3.42)

-T)

function ﬂle’ G — g% can change sign more than once.

a T)_

Therefore, setting ,119’7 ° ~95 =, we find:

1 1-a
5= H_J'”“TT) (4.3.43)
b

Believing s<(0,T) and substituting (3.6.42) into (4.3.41), we obtain the

following relations:

_ 1-a
s___é(lnﬂiJr Tj
b : (4.3.44)
e [Lyy i) 2l-2) e |
4=t E(Me Wb ¢ . (4.3.45)

According to [51], control (4.3.42) have to satisfy the following moment ratio

T

je_étu (t)dt =al -1, (4.3.46)

0

Substituting (4.3.45) to (4.3.43), we obtain:

T b (—) a(l—a)
T b ( € D ] (4347

in order to s (0,T) have to have the following conditions:
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0<2 1, (4.3.48)
l-a
l-a

LG |ed=a) 4 (4.3.49)

2 w*b

From (4.3.49), we have:

w*b ( Eor

|| < eb -1/ (4.3.50)
2(1-a)

So we have a necessary condition for the existence of control u(t) , that
satisfies the relations of moment (4.3.41), (4.3.46) and limitation (4.3.34).

Now substituting control (4.3.42) to the equation (4.3.46) and taking into
account the relations (4.3.44), (4.3.45), we obtain the following equation for the

parameter A, :

T la 1
“bo 1ba &
% 1a(l_lb5) ( +e,ﬂ 2 +lb5 X La) a0 (4.3.51)

We introduce the notation ,u:lb—g. Then the equation (4.3.51) can be

written as:

l-a; 1 25 M or
y[e b +1J211“ _(V +e”" +1]/111” +2e#(1-u)=0. (4.352)
For different values u satisfying (4.3.48) we have the equation of a different

nature. So at =1 and natural nzlL available equation of at least second
—H

order. Believing n=—~_-1, we find y_; This value satisfies the condition
1 H
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(4.3.48). Then, to determine the parameters A we obtain the following

quadratic equation

T ey sy

W*
This equation has real solutions, if the condition

2 -a)
(Zf +e " +1) —2e*T {e[ b J +1] >0. (4.3.54)
W

For to select b, & we have the following relationship:

5:l—_a or
2b

1-a

b=—-.
25

(4.3.55)

The positive solution of the equation (4.3.53) is the desired parameter optimal
control (4.3.42). After determining the desired value 4 =4,", solution of the

this problem can be written as:
* * 1-a
] . T T)
W:W7+W7S|gn[ﬂle ( b j —e‘ﬁ‘) (4.3.56)

Consumption W defined in the form (3.6.56) satisfies the restriction (4.3.30).

Then under consideration on the interval will have the following path:
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* *

(2t W W
e (X, — + , O<t<s,
(% 1—a) l1—-a
W
XT
x(t) = (1)—3 . t=s,
BT w
XT_e (Xo_l—a)
e Iy s<t<T,
l1—a
)T *
where s=T --20 pl=8| y o b 7y W |
l1—a w* l1—a

The graph of this function and the table are shown in fig. 4.3.4.

It should be noted that in this case the process of distribution of gross

domestic product is characterized by a singularly perturbed equation, since the
(4.3.35) can be written as

dx ow
— =OX——, 4.3.57
H dt l1-a ( )

where p= 1b—5 <1- small parameter.
-a
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a=04 b=07 s=1853365752362144
=05

t= 00 x= 000

t= x= 1130

t= x= 0,00

t= x= 000

t= x= 0,00

t= x= 000

te x= 0,00

x= 0,00

te x= 000

t= S0 x= 000

te 100 x« 000

t= 110 x= 000

t« 120 x= 000

t= 130 x= 000

t= 140 x= 001

t= 150 x= 001 CmmsreesEemseemgrmespecs ;
t= 160 x= 003 0 2 4 6 8 10 12 14 16 18 20
t= 170 x= 003
t= 180 x= 018
t= 180 x= 042
t= 200 x= 100

—_
o

WONDN & W
oooooooo

Fig. 4.3.4 Graph of function x(t) and table of values.

4.4 Investigation of the Problem on Optimal Control in
Single-Commodity Macro Models Based on the Delay
of the Process of Investments

As decomposition described in chapter 1, for the task

k=—(¢+n)k+u, (4.4.2)

uo=>0-a)fk -1+ un)o—w,
where u= % w=w-(1-a)r we will share the slow and fast position.

Matrix A and B have the form:

—(e+n) 1 0
A=l (1-a)f CL+un |, Bz(—l]'
7 H
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In this case

A=—(¢+n), A =1 A=(1-a)f,
A,=—(1+gn), B =0, B,=-1

Then the system with separated variables can be written as:

k =mk —NW,
hoohe (4.4.2)
MU, =0, =W,

where

-1 ~1Y +4(1-a)f
m, =—(c+n)+ 2 e 2) réd-a) ay
7

eu—1+ ,u5—12+41—a fu
= (L ) J( 2) (1-a)

1 ~
N = Lo~ B _
\/(/15—1)2+4(1_a)f/1 v,=v, Hlk#, k# —k#—f-,uNuﬂ,

W, =w,~(1-a)r, w,()=w(t ). 5,(0)=0(ts), K(1)=K(tn)

For the system (4.4.2), we have the following boundary conditions:

(4.4.3)

(4.4.4)

H, = 5”‘“\/(”5 ‘213! +4{1-a)f JimH, (1) =(1-a) f.

u—0

It is easy can to make sure that inequality
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(1-a)f <(e+n)(1+un) (4.4.5)

is a condition of the sustainability systems (4.4.2).

For the system (4.4.1) with the boundary conditions (4.4.3), (4.4.4) consider
the problem of choosing a trajectory of consumption per worker at the condition

.
J= —J'e"sswm (s)ds — min, (4.4.6)

0

g
or J = 'fe*(ssww (s)ds — max.
0

In the future, we believe that for the system (4.4.2) run the condition (4.4.5),
i.e. the system is stable. In this problem, the phase coordinates are the basic
production assets for the one worker k and volume of investments was put into
effect, calculated per worker » and consumption per worker W - is a control
parameter. It should be noted that the consumption values can not less than zero
and in the closed economy can not rise higher output per worker, i.e.

o<w< fk.+r, (4.4.7)

where K. — the maximum allowable level of capital per worker.

Solution of the system (4.4.2) with the initial conditions (4.4.3) can be
written as:

t
K, (t)=e™k, — j e™INW, (s)ds,
0

t t (t-s
7

i ml 1 mh
b,)=e “G-=[e * W,(s)ds. (4.4.8)
0
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At t=T, taking into account the final conditions (4.4.4) from (4.4.8) we

have the following relation of moment:

T 1T mH
clzje"‘l‘T*S)Nv‘vﬂ(s)ds, c:z:;.[e “ W, (s)ds, (4.4.9)
0

0

T
m,—

where ¢ _ | 4e™K, c,=-0. +e “d,

Considering that W, =w, —(1—a)r and from (4.4.6) we have:

J=

O L, —

.
e "W, (s)ds+ I e (1-a)rds . (4.4.10)
0

The second integral does not depend on W, and the desired minimum of w,

value J(w, ) will be reached on the same functions W, =W, (t), and that the

minimum of expression

;
J, =[e ", (s)ds. (4.4.11)
0
From (4.4.7) we have the following restrictions for function w,,

0<W < fk +r. (4.4.12)

Then
.
0< [ (t)dt<l, (4.4.13)
0
where | =(fk.+r)"T.

Thus, have a problem about the minimum of (4.4.11) with restrictions (4.4.9),
(4.4.13).
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A similar task can be solved by the method of A. I. Egorov [37], which is
based on theorem of Levi about orthogonal decomposition of elements of a
Hilbert space. The procedure for constructing an optimal control method of
A. I. Egorov differs little from of the same scheme as in the method of moments
[53]. But it is convenient for the practical construction of optimal control, it is
not required to solve the auxiliary extreme problems. Desired control take in the
form:

T-t

W (t) — }/leml(T—t)N + 7/Zem2[ " ] i }/Oe—at . (4.4.14)

7

This control belongs to a boundary of the set (4.4.13) [96]:
T
—2
I °(t)dt=1. (4.4.15)
0

Constants y,,7,,7, Will be determined from the relation (4.4.9), (4.4.15).
Substituting the value of w(t) from formula (4.4.14) to the relation (4.4.9),
(4.4.15), we obtain a system of algebraic equations

M71 +0o)s +13¥o =Cpy Tt + 1005 + 1370 =Gy (4.4.16)

0at + ols + Vgl + 20,0075 + 2037100 + 207,70 =1,

2 (myuemy) T mT
where r, :N_(ez"‘lT -1, » :L(e R -1, r,= e* N L—e ™Y,
2m, pHm+m, m+6
m,T
1 2m,T 7 ,MT 1
rLh,=r,, r,= e “ =1, Ih,= (1_e H ), r :_1_e—2(7l' .
Hly =1y 1 2m2( ), Do m, + 1o 33 25( )

Of the first two equations of the systems (4.4.15) y,,7, are uniquely

determined through y,:
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n=dy,+h, y,=dp, +h,, (4.4.17)

folos — i3l hl — Cily, —Coly d fofis = Nl

where d; = , ,
M1l =l M1l = ol M0, =l

Cz r11 B Clr12
h, = ———=%, 1,1, —I,,l,, #0.

LY Rl (1P
Substituting the value of y, and the last equation of the system (4.4.16), get

the quadratic equation with respect y,, :

ay +2by, +c =0, (4.4.18)
where a=r,,d? +r,,d7 +r,, + 2r,,d,d, + 2r,,d, +2r,,d,,
b=r.,dh +r,,d,h, +1,dh, +1r,d,h +r;h +r,h,,
c=r,h +r,hZ +2r,hh, —1.
Equation (4.4.18) has two real roots »{’ and y{?, if they performed

condition

b? —ac>0. (4.4.19)

Substituting the found values y, in (4.4.17), obtain:

7 =diyg) +hy, 7P =diye +hy ) =dyrg? +hy,

72 =d,y? +h,. (4.4.20)

Then by the expression (4.4.14) we define two functions

Tt

my (—
O (1) — D amT-1) ) M-
W (t)=y"e™ UN+y’e f o+ypeT,

T-t
m, (—)

72 (1) — 1, () amT-1) ) (2)p-& 4.4.21

W) =p,7e" UN+y,e e ( )
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One of them is the solution of the considered task. Everything, from these
controls by substituting in functional (4.4.11), we will define the optimum
decision which corresponds to the minimum value of functional. We write
down optimal control as

(T-1)
my
W, ()=remTINsyple s H pypet, (42

where y$, 7, y{# — optimum coefficients which depend on small parameter.

Then the phase coordinates corresponding to optimum control (4.4.22) are
defined by ratios:

m,T

~ 2, mT eT N/J _myt
k, (t)=e™k,—uND,+ (emt —emt w4 S TH o u _gmt |yl
M Ay M, (4.4.23)
+ N (efat _ emll ((J;z)’
m, +3J
m, (T+t) )
myt m,t m,t
= _ Ne™" = e * =
v, ®)=e”d,—Hk, (t)+ ™ —e )y = —(l-e “ )i+
T M, 2m, (4.4.24)
m,t
1 &
e _gH# (#).
us+m, ( )70

On fig. 4.4.1 are graphs of control w, (t)and functions k, (t) &, (t)

1
Honm

respectively at 12 =0,5. At £ — 0 we have the following limit ratios:
m—->—(e+n)+@-a)f =my, m, > -1,

1 om
N —1, Hl —)(1—a)f, r, — r-1(10) :R(ez o _1)1
0

r,—>rY=0 r,—->rY=0,
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Graphs of optimal solutions

WHWWWWWWWWW#
o1 2 3 4 5 & ¥ & 9 10 11 12 13 14 15 16 17 18 19 20 2

= (Optimal control
= Basic production funds
= Capital investment

Fig. 4.4.1 Graph of optimum decisions.

r,—rY :—emOT A-e ™y _1 r, >r9 =
13 13 m0+5 1122 22 2’ 23 23 '
1
—r@ _ -25T
f33 =T33 —%(1_9 ),

r© . .
d, »d®=-2%.d, > di® =-2r9 ¢, »>c® =k, +e™k,, (4.4.25)

r-11

0) (0) Cl(o) (0) ) (0)
c, >C =—u; +(1—-a)fk;, h >N =0 h, - h{® =2c¢”, r!” =0.
11

For limit values of parameters from (4.4.25) it is possible to receive the ratios
similar (4.4.18) - (4.4.21) and to define from them limit values of optimum

coefficients: y( — 5@yl 5 O o) O Then from (4.4.22), (4.4.23)
and (4.4.24) at ; — 0, because of the system (4.4.2) stability we receive the

following limit ratios of the solution of a task respectively (see fig. 4.4.2)
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wO () =e™T V@ re P +1-a)r,  (44.26)
K© (t) = gMtk +£(e—mot —em°t))/(0) +#(e—a _ emot)y(o) (4 4 27)
° 2m, ' p+O o

VO =kOM)-1-a)f —-wOt)=@-a)(kO®t)+r)-wO(t). (4.4.28)

We will notice that direct application the method’s of A. I. Egorov [37] to
this task increases number of the equations by one. If the studied system has
high dimension, the method will be ineffective. Therefore we pass on another.

We will consider system

K, =mok, —W., K, 0=k, k,T)=k, (4.4.29)

U

* *

v, =-v, —W,, v,(0)=v, —(1-a) fx, =vy, v,(T)=0, - (1-a) fk; =0y,

where v, =v, —(1-a)fk,,.
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The limit ratio of optimal control 774 54

- 302,651
— 324,082
- 339,833
- 350,682
- 357,352
~ 360,471
~ 360,589

- 358,188
- 353,692

o 1 2 3 4 5 & 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 [7347488

The limit ratio the basic preduction funds

T T T T T T T T T T T T T T T T T T T T
o1 3 4 5 B 7 8 8 10 11 12 13 14 15 16 17 18 18 20 A
The limit ratio of capital investments
:
T
o 1 2 E:| 4 5 5} 7 g el 10 M 12 13 14 15 16 17 18 19 20 2

Fig. 4.4 Limit ratios.

Now we will consider a task about a minimum of functional (4.4.11) at

restrictions (4.4.29) and (4.4.13). We will designate this task a symbol P, . At

1 =0 from (4.4.29) we receive the generating system

k® =mk® -w®, Kk°0)=k,, kOT)=k, (4.4.30)
0=-0 -w%or 0 =(1-a) k" -w"?,
where 0* =0 —(1-a) k.
Then tasks (4.4.11), (4.4.13), (4.4.30) are limit in relation to a task Pﬂ. We

will designate it through P,.
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We solve the task Po. We write down the decision of system (4.4.30) in a

look:
t
K (t) =e™k, — j e™ 9w (s)ds, (4.4.31)
0

O (t) = @-a) k@) —w ().

At t =T from the first equation (4.4.31), we obtain:

.
Cfo) _ J‘emo(T—s)V—v(O) (s)ds, (4.4.32)
0

where ¢ = —k; +e™"k,.
Similarly, above stated method, control w©® (t) will be search in the form of:
wOt)=7,e™ 4707, (4.4.33)

This control belongs to the boundary of the set (4.4.13), i.e. it must satisfy the
equation

[wC ()t = 1. (4.4.34)
0

Given the (4.6.33) by (4.4.32), (4.6.34), we obtain the following system of

algebraic equations y,,7,:

{rl(lo)771 + r1(30)770 = Cl(O)’ (4.4.35)
rl(f)7712 + 2r1(3(.))771770 + rs(g)7762 =1,

)

whnere I/, , I etine ytereatlonso ormula (4.4. . From the
here 19, 19, 19 defined by the relations of formula (4.4.25). From th

first equation (4.6.35), we obtain:
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7, =07, +h, (4.4.36)
(0) c©

where d, = —%, h, :ﬁ. Given the (4.6.36), from the second equation
11

11
(4.6.35), we obtain a quadratic equation for y:
ayZ+2by,+c=0, (4.4.37)
where &~ {087+ 2008 460, B~ (0GR + R, € - KRE -1
Equation (4.6.37) has two real roots 7\, 72, if b? —ac > 0. Assume that

these roots exist. From (4.6.33) we have two functions -control, one of which

minimizes the functional (4.4.11), written in the form (see. fig.4.4.3)
w(t) = 7™ + 7O + (1-a)r, (4.4.38)

where 7%, 79 — optimal coefficients. Substituting (4.4.38) to (4.4.31), we
obtain (fig. 4.4.3):
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# Graphs of generating system

Optimal control — Optimal contral

B o o e e B L B A R R R
001 2 3 4 5 B 7 8 8 10 11 12 13 14 15 16 17 18 13 20 21

Basic production funds

Capital investment

Fig. 4.4.3 The graphs generating systems.

myT

€ (e—mot —emOt)?l(O) +L(eiﬁ _emot)yéo)' (4439)

k@) =e™k, +
® ° " 2m, my +6

0@ (1) =W (t) + 1—a) f -k (1) = 1—a)(K® ) + ) —w® (1).

So, we got a solution to the problem P,.

Note that the resulting function in (4.6.38), (4.6.39) coincide with the
functions in formulas (4.6.26) - (4.4.28) (see. fig.4.4.2).

We arrive at the solution of the tasks P,. We define control W; (t) in shape:
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wot), o<t<T,
W (t) = - _
Ao, ﬂ(T tj’ 0Tt T (4.4.40)
u “oou
T-t . . .
where p| —— |- the function of boundary layer type, which have is
MU
exponential decrease. The function W, (t) already identified, remains to be

determined (T j With W, () = U(T J from the second equation (4.4.29)
u u

we have:

v, (t)= e (US +0 (O))— v© ('[)—i j. e_;‘sn[T des (4.4.41)

c;(t)zlje “ n(T _des, (4.4.42)
Y7,

where C,=-0; +€ K (UO +0 )(0))—0(0)(T).
Repeating the above procedure in this case, we define control

* T _t -y = . - - - -
w,(t) = 77(—) so that it is minimize the functional (4.4.11) and satisfy to
Y2

relation of moment equation (4.6.42). As we saw above, such control exists on
the boundary of the set (4.4.13) and getting in shape:

(T j ﬂle “ +y,80 . (4.4.43)
7
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Optimal coefficients ﬂl* , /3’5 selected from solutions of the system algebraic

equations:

Fyo By + 3By = Cy,
. ) ) . g (4.4.44)
oo ttfBy" + 2170y B By + Vaatt” By =1,
1 _r 1 T
where 1,, = ,Jjﬁllrzz = 2[1—e # J lys = mIzimlr23 = l_@(e‘“ —-e J [

From the first equation (4.6.44), we obtain a quadratic equation with respect
to B, :

*2

pB, —r=0, (4.4.45)
where p=r,u’ —u® 2, r=I|-pu-2 . Equation (4.6.45) has two real
22 r22

roots ,Bg(l) and S, ®  Assume that these roots exist. Then from (4.6.43) we

have two functions-control, one of which minimizes the functional (4.4.11).

Substituting control (4.4.43) to (4.6.41) we obtain:

t 1 T+t 2t ﬂ* t
U; =e ”(U;+U(0)(0))—U(0)(t)—5,31*e “ [1—6”}——1_0;; {e‘" —e ﬂ}

Given the (4.6.38), (4.6.43) control W; (t) represented in the form:

' { Ogm(T1) o 0e=2 = 0<t<T,
W =

VT e e, 0srsr <aon
where sz, lel_
yZi H
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Three (v_v;,k(o),u;) is a solution the problem. It should be noted that the

system (4.4.29) approximates the system (4.4.2) with an accuracy O(u). In
addition, when z — O the solution of problem P, approaches to solution of
P, . which was obtained in (4.6.39) (4.6.40) (or (4.6.26) - (4.4.28)).
Consequently, the solution of problem P, is an asymptotic approximation of

the solution of the initial problem with the accuracy of the order of smallness
O(y). When the delay at enter capital investments disappears, i.e. at ¢z — 0
we have the solution of problem P,. The solution of the problem P, forms an
arterial road. The specific investment imposed by into action without delays,
described by the function uo(t). In this case, we arrive to a certain idealization,
but in fact the process of development of investments in the economy without
delays occurs. However, the study duration of the process assimilation of
capital investments in a certain period of time and the effect of the lag (delay)
on other indicators of economic growth of interest of a scientific nature. In this
sense, the convergence rate for solving the problem to the solution of the

problem P, is of practical importance.

4.5 Estimation of Optimal Development of the Economy
Based on a Single-Commodity Optimization Model of
with a Small Parameter

Here, by the method small parameter is investigated the optimal control
problem for single-commodity model of economy and conducted a comparative
analysis with the known results which receive from [85] in other ways. It should
be noted that at the beginning of this task is required forming arterial road of
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this model and to find corresponding control realizing the arterial road [20] at

solving the problem (4.3.29).
T
J, =e™*(1-a)uxdt — max (4.3.29)
0
or
T
J, =—Je*(1-a)uxdt — min. (4.3.29)

0
Then the reduced problem can be formulated as follows: to find such process

v =(k(t), X(t), u(t)), which minimizes the (4.3.29) at restrictions

k=—(e+nk+(1-a)l-u)x, (4.5)
k(0) =ko, k(T) =k,
O0<u<l x=f(kt)=0,

k(1) >k, (t), 0< <1,
where f(k,t)= % F(k,L,t).

Here we propose a new approach, which is based on simple properties
decreasing function on a closed interval. We denote by D the set of values K,
satisfies (4.5) and call it the permissible region the process. A similar problem

in the case of 1 =1 considered in [85].

Highest average consumption, which should be secured by this process is
estimated by the value of functional (4.3.29) with the sign reversed. In this
problem, the state of the system is k - the amount of capital per worker, control
- labor productivity X and the share of consumption U . The equation the

process is the differential equation of growth capital intensity.
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e t
If enter a "rapid" time 7 by formula 7 = —, where g —small parameter,

then time 7 the original t it is a "slow" time. In such a case, the variables
coefficients of the of the studied system in "fast" time z will be slowly varying.

Administering to a system small parameter x - it is a certain idealization, which

emphasizes the fact that the pace course of the process above (approximately,

1. .
— time increases) than in the normal mode.
Y7,

Let the size of the final product are determined by the production function of
the Cobb-Douglas [82, 85]. Then labor productivity X is determined by the
function

X =be?k*, a=1-3, (4.5.1)
where p - coefficient defining rate of growth of a technical process, « - the
coefficient of elasticity of manufacture production assets; /£ -the coefficient of

elasticity of the release of labor.

Equation (4.5) with (4.5.1) is written as:

1K =—(g+n)k +(1L—-a)(Ll—u)be”k*. (4.5.2)
Consider the problem (4.3.29), (4.5.2). We introduce a new function
V=ke? (4.5.3)

Then in view of (4.5.3) from (4.5.2) we have:

yc:j—\: =(—(e+n+du)k +(L—a)bek“)e ™™ —e*b(l-a)e”k“u. (4.5.4)

Now, from the right side of (4.5.4) delete k. We require that the sum of

standing to the e, i.e. function
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m(K,t) = —(& + n + du )k + (L— a)be” k“
did not depend of k . Then

aa_r; =—(e+n+du)+(1-a)e”ak*™ =0,

From here we have:

w1 _ E+N+u K
a(l-a)be”

or

1
Kok’ :( a(l-a)b jﬁe;t_

ole+n+du

Using by (4.5.3) the equation (4.5.4) can be written in the form
dv

== (~(e +n+du) + (L-a)be"k“ )V —b(1-a)e uk* 'V .

dt

Than in view of (4.5.5) from (4.5.7) we will obtain:

av E+N+ A
NE=——'U(U—,3)V-

In view of (4.5.5) the functional (4.3.29) can be written as:

T

_MIqut .
0

J=
a

Taking into account (4.5.6) from (4.5.3) we have:

1

_ B —(5-Ex (-2t

V:(Mj e B =e ﬁv(o),
E+N+ou
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a(l-a)b ji_

E+N+du

V(O)=k(0):[

From formulas (4.5.10) we find:

V =—(5-L)y
A (4.5.11)

Comparing equation (4.5.8), (4.5.11), we obtain:

E+N+J
R -py=uc-2). (4.5.12)
p
Condition (4.5.12) takes place if
Eﬂ +&+n i
u:u;:l—aﬂi' (4.5.13)
e+N+du

Similarly in [85], the function K (t) (4.5.6) call highway of the dynamic

model. Control, implementing this feedline - a constant, which is determined by
(4.5.13). Then in view of (4.5.13) equation (4.5.9) is written as:

5 Pluvesnl
jo_gtntoul, P v (o,
a e+n+aou g

P

Here the integrand V(t):e‘“k;(t)ze( 7 -V(0) - the discounted value of

the capital.
From (4.5.10) can to see that at 5 >§ the function V (t) - decreasing on the

segment [0,T], and V (0) is its largest value, i.e.
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T -e_[s_ﬁv (0)< ]V (t)dt <T -V (0).

0

5 B,u+g+n
Where, 3% =3, =— S H 1-a? ).
a E+N+du

With 0 <% function V (t)— increasing on the segment [0, T } Then

T (ﬂ—a‘JT
T-VO)<[v()dt<T-e” 7 -v(0),
0
E+N+J Freen [ﬁ‘ﬁj'T
A S Te/ ) .v(0) (45.14)
a E+N+du
s P
With 6 == we have
B
3723, =S 5 1 v
p =i = B-T-V(0). (4.5.15)
In the "fast" time 7 highway is
1 P
— L =
k' =k* (zu) = ad-a 17 (4.5.16)
g E+N+du

*

And it will be slowly varying functions. With x — 0, k;, u,,

J,, have

the following limit values
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1
w_ékg:(aa—am]ﬁ,

a £+n

g+Nn

AV (0)T.

u, >uy, =4, J,>J,=-

For short periods of time changing the "slow" variables does not affect the
fast equations and consequently limit values are k,, U, may serve as an

asymptotic approximation when forming highway and enables to obtain a
gualitative picture of it.

In order to process v was optimal in the sense of the solution of the task k;
it should satisfy the given boundary conditions (4.5). But it not so the solution
k; can not satisfy the boundary conditions (4.5) because through these points

are other curves, which are partial solutions of the original equation (4.5.2) with

a predetermined control U .

We define these curves and their points of intersection with the highway

(switching point) k;. Dividing both sides of the differential equation (4.5) on
k* we have:
1Kk =—(e +n)k** + (1—a)(l—u)be”.
We introduce a new variable
ke —k# =z. (45.17)

Then, taking into account (4.5.16) from (4.5.15) we get:

12 =—ﬁ(g+n)z+,8(1—a)(1—u)bept- (4.5.18)
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With the known U (U -constant) exact solution (4.5.18) with the initial

condition z(0) = k/ written in the form of the Cauchy formula:
*ﬂ(é‘*“)i ﬂ L —ﬂ(“:Jrn)ti—S
2= k{+L@-a)a-upfe " #erds
H 0
or

—pe+n) - a.(1-u a,(1-u
z(t):e “ kéB— 0( ) " o( ) e”t
g+n+y% 5+n+y£

B

, (4.5.19)

where a, =b(1-a).

Similarly, the solution of (4.5.18) with the initial condition z(T)=k/ is

determined by the relationship:

e _a,(1-u)e” L &= u)e”

g+n+y£ £+n+,u£

z(t)=e k/

Note that if for the given problem build the Hamiltonian function, then it will
depend on the control U linearly and its maximum value are achieved only in
the boundary values. But in the real economic problems, as noted in [85], the
minimum level of consumption is strictly positive: 0 <u, <u <1. Therefore,
the Hamiltonian takes the maximum value in points u =u., u =1 and through
these values can be determined switching point.

For to determine the point of intersection of the highway with the boundaries

of the permissible region D we have the following relations:
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t
a,a A a,l-u) | a,(1-u)
0 ept e u koﬁ _ =0 i + 0 i ept

s . (45.20)
o l+ﬂ£ i+y£
B B
a,o et a,(1-u)e” | a,(1-u,)
—0" et =e # k-2 ' +2 et (45.21)
A+du ﬁ+y£ A+u—
p p

where A =g+n, a,=b(l-a),i=12.

In formulas (4.5.20), (5.6.21) if i =1, it takes the lower limit U =u, =u,, if
i =2, then u=u, =1. Then the left and right switching points are calculated

by the following formulas:

o (1-u)a,
A+dou i+yp

S - ,
PA+ up kp_ao(l_ui)
0
P
A+u=
B
pa  (1-u)a,
A+ou i+y£
t, = LA —" In
© PAtup PA+up f_ Bold=U)
1
Yo,
A+u=—
B

The boundaries of the permissible region D is defined by the relations
(45.17), (4.5.19) at values u=u., u=1. Lets k, <k} (0), k, >k;(T).

Then highway k# (t) (4.5.15) proceeds as shown in fig. 4.5.1. As can be seen
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from the figure, the optimal trajectory consists of three sections with moments

of switching t, and t,. Starting from the time t, until t,, up growth is on

highway, and outside the interval (tl,tz) consumption is at a lower level u”,
i.e. in those periods of time in the economy is a process of accumulation. The
output trajectory to a highway at different values of the small parameter is
shown in fig. 4.5.3-4.5.6.

. . . . - - . . . . . . . . - - . . . .
13" il il S Dl il Tl " S Dl S Tl sl Tasl i B s Tl s T S B
. . . . . . . . . . .

36 .................. T=F==C=F==%= T === === =d==S=d==== r
S S S S T T e

. . . . . . . . . . . . . . - . . . . . .

. . " . » . . . . . . . . . . . . . . . :

34 Sosloleatbaleatodaatladaatataats ‘el » .

. . . . - - . . . . . . . . .

32 B8 cerasaarnsanravanras - :

ORI :

= s & 8 8 s & & 8 8 ® s & & ® 1

b {1 ] SRR, WP A PR S R S Fy - PP - PP PR S P P

H * 2 = & a2 & 2 s a4 & & a2 @ s ¢+ 0 2 s}

L] . . - - . . . - . . . Ll . . . . L] . H

s 3 SRR S R Ay SR ST T 0 . PR A PR R PSPy PSPPI 1

" sY a2 3 & = & 2 » 2 & s ® w @ = &« »ox 21}

. . . . . . . . . . . . . . - - . . . L] .

p{: 38 SF JS  P H-.FL - - JES R- PU  J 3

. . T R R R B R

S ¢ A s = s & 2 % 8 & 4 & a2 @ s & 2 % 2}

24-| -------------------------------------------------- ¥

. . . . - . . . . . . . . . - - . . . . 4

L]

22N T . g

L . . 4

. . 8w . . . s e 8w . . . e e 4

20 sassgansagagesg PR AR S yssAE R AEgangaysssuysuas

L T . » . " . . . |-

L]

L]

-

»

L]

1o -d--ie bt NG @sa9 et

VR R T L O 0 PO O B

L R = A A TR T U VMR

(33.19v=1

Fausedaal TR &
. . . .

6-]. ;:—-:--h--‘—-h-:- : SOCCLC
af T L L
. % A0 T

01 23456 7 891011121314151617181920 21

\ 4

Fig. 4.5.1 The optimal trajectory the moment of switching.
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As we noted above, that the small parameter is introduced artificially into the
system, so that the result was a simplified algorithm that allows us to offer cost-
effective computational procedures. Therefore, we need to derive the
corresponding asymptotic formulas that make it possible to build the optimal

trajectory with a certain precision, while maintaining the qualitative features of

t
the processes under study. Moving on to "rapid” time 7 = — make the change
U

of variable in (4.5.18):

:—Z =—BAz+ fa,(1-u), z(0) =k{ . (4.5.22)
T

The solution of equation (4.5.22) if known U is as follows:

(4.5.23)

2(z) = e [kﬁ _ ao(l_u)j+ a,(1-u) .

A A

Graph of the function is shown in fig.4.5.7. For g:ﬂ (t>T) from
y7i

(4.5.18) will have:

(;j—z =—BAz+ fa,(L-u)e”™ z(0)=k/. (4.5.24)
O

The solution (4.5.24) can be written as:

a,(1-u)e”"
L a-ve”

2(c)=e" (k{ - 2

(4.5.25)

)

aO (1_u) epT
A

A graph of this function is shown in fig. 4.5.2.
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k0= 18682 k1= 37772 -~
zz1(t)

@@= z1(t) for mu=0.5 o z1(t) for mu=0.05 === z1(t) for mu=0.005
e |fagistral (Highway) === z1(t) for mu=1

t10= 20811 t22= 23,0502
KObeta= 15330 Kilbeta= 27130

o 2 4 & 8 10 12 14 16 18 20 210 17715 2 12,4386
tau0= 39,0913 sigmal= 9,0311
mu=1,0000

t10= 22334 122= 23,1698

Graph for 2(t) | The outlet to highway | Graph for 2(tau) | Save I =

Fig. 4.5.2 Graphics functions ¢(t), z(c) and a table of values.

Then we have the following asymptotic formulas defining the intersection
point of highway with the boundaries of the permissible region D :

1, Ak —a(-u,)

Ty =—

;Lﬂ aO(ui _ﬁ)

_1 K/ —a,(1-u,)e”
B ag(a—@2-u)e™)

Ot

At that itself highway is determined from the (4.5.15), i.e. is taken limit value
k, at u—0:

1
o)
A

where a, =b(l-a), A=&+n. It should be noted that the first term in

formulas (4.5.23), (4.5.25) are, respectively, the left and right “borderline
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functions” [15], which approximate the transition from the initial state to the
highway and go to the highway in the final state.

An outlet to highway of single-product optimization model

T t t T T T T t T T

0o 1 2 3 4 5§ 6 7 8 9 10 11 12 13 14 1S 16 17 18 19 20 21

< Exit = Highway= z1(t) |

Switching points
t10= 22334 t22= 23,1698

The points an outlet to highway Exit at mu=05 |
t1=00 y1= 1,59830
2= 22334 y2= 13,3303
Exit at mu=0.05 I
Exit at mu=0.005 |

Fig.4.5.3 Thecaseat =1
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An outlet to highway of single-product optimization model

0 1 2 3 4 S5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

o Ext == Highway=—z1(t) |

2= 2,2334 y2= 13,3303 Exit at mu=1 I

atmu= 0,5000

Switching points
t10= 2,0811 t22= 23,0502

The points an outlet to highway

0=00  yl= 15390 T |
©= 20811 y2= 13,2659 Emtatim=105
Exit at mu=0.005 |

Fig. 4.5.4 Thecaseat =0.5

Note that if for the given problem build the function of Hamilton, then it will
depend on the control U linearly and its maximum value are achieved only in
the boundary values U . But in real economic problems, as noted in [94, 97],
minimum level of consumption is strictly positive: 0 <u, <u <1. Therefore,
the Hamiltonian takes the maximum value in points U=U,, U=1 and terms

of the values can be determined switching points.
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An outlet to highway of single-product optimization model
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0.05.

Fig. 4.5.5 The case at u
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An outlet to highway of single-product optimization model
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Fig. 4.5.6 The case at 1 =0.005.
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tau0= 9,0913 sigmal= 38,0311

mu= 05000
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Graph of function z( tau)
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Fig. 4.5.7 Graph of function Z(T) and its table of values.
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